在多核GPU平台上贪婪地使用GPU容量进行数据列表处理

Carlos Alberto Martinez-Angeles, J. Buenabad-Chávez, M. Castro-García, J. L. Quiroz-Fabián
{"title":"在多核GPU平台上贪婪地使用GPU容量进行数据列表处理","authors":"Carlos Alberto Martinez-Angeles, J. Buenabad-Chávez, M. Castro-García, J. L. Quiroz-Fabián","doi":"10.1109/ICEEE.2013.6676037","DOIUrl":null,"url":null,"abstract":"We have designed data list processing for multicore-GPU platforms and significantly improved the performance of both numerical and symbolic applications. For the latter, a novel aspect of our design was the management and processing of new data dynamically generated within GPUs. This paper presents various optimisations to our first design [1] aimed to use more the GPU, through reducing communication between the host (a multicore) and the GPU, in order to improve performance further. We present experimental results for three applications with different granularities and access patterns. Performance was improved again, significantly in some cases; using multicore-GPU platforms efficiently may involve complex changes to software.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedily using GPU capacity for data list processing in multicore-GPU platforms\",\"authors\":\"Carlos Alberto Martinez-Angeles, J. Buenabad-Chávez, M. Castro-García, J. L. Quiroz-Fabián\",\"doi\":\"10.1109/ICEEE.2013.6676037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have designed data list processing for multicore-GPU platforms and significantly improved the performance of both numerical and symbolic applications. For the latter, a novel aspect of our design was the management and processing of new data dynamically generated within GPUs. This paper presents various optimisations to our first design [1] aimed to use more the GPU, through reducing communication between the host (a multicore) and the GPU, in order to improve performance further. We present experimental results for three applications with different granularities and access patterns. Performance was improved again, significantly in some cases; using multicore-GPU platforms efficiently may involve complex changes to software.\",\"PeriodicalId\":226547,\"journal\":{\"name\":\"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2013.6676037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了多核gpu平台的数据列表处理,显著提高了数值和符号应用程序的性能。对于后者,我们设计的一个新颖方面是管理和处理gpu内动态生成的新数据。本文介绍了我们的第一个设计[1]的各种优化,旨在通过减少主机(多核)和GPU之间的通信来更多地使用GPU,以进一步提高性能。我们给出了三种不同粒度和访问模式的应用程序的实验结果。性能再次提高,在某些情况下显著提高;有效地使用多核gpu平台可能需要对软件进行复杂的更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greedily using GPU capacity for data list processing in multicore-GPU platforms
We have designed data list processing for multicore-GPU platforms and significantly improved the performance of both numerical and symbolic applications. For the latter, a novel aspect of our design was the management and processing of new data dynamically generated within GPUs. This paper presents various optimisations to our first design [1] aimed to use more the GPU, through reducing communication between the host (a multicore) and the GPU, in order to improve performance further. We present experimental results for three applications with different granularities and access patterns. Performance was improved again, significantly in some cases; using multicore-GPU platforms efficiently may involve complex changes to software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信