P. Scholze, Jared Weinstein
{"title":"Diamonds II","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.12","DOIUrl":null,"url":null,"abstract":"This chapter evaluates the complements on the pro-étale topology. It addresses two issues raised in the previous lecture on the pro-étale topology. The first issue concerned descent, or more specifically pro-étale descent for perfectoid spaces. The other issue was that the property of being a pro-étale morphism is not local for the pro-étale topology on the target. The chapter then looks at quasi-pro-étale morphisms, as well as G-torsors. A morphism of perfectoid spaces is quasi-pro-étale if for any strictly totally disconnected perfectoid space with a map, the pullback is pro-étale. Using this definition, one can give an equivalent characterization of diamonds.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章评估pro- sata拓扑的补充。它解决了在前一讲中提出的两个问题。第一个问题是关于下降,或者更具体地说,是关于完美曲面空间的可变下降。另一个问题是,对于目标上的pro- sata拓扑来说,作为pro- sata形态的属性不是本地的。然后,这一章研究了准准准变异,以及g -变异。如果对于任何具有映射的严格完全不连通的完美曲面空间,其回调是亲的,那么完美曲面空间的态射是准前的。利用这个定义,我们可以给出钻石的等价特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diamonds II
This chapter evaluates the complements on the pro-étale topology. It addresses two issues raised in the previous lecture on the pro-étale topology. The first issue concerned descent, or more specifically pro-étale descent for perfectoid spaces. The other issue was that the property of being a pro-étale morphism is not local for the pro-étale topology on the target. The chapter then looks at quasi-pro-étale morphisms, as well as G-torsors. A morphism of perfectoid spaces is quasi-pro-étale if for any strictly totally disconnected perfectoid space with a map, the pullback is pro-étale. Using this definition, one can give an equivalent characterization of diamonds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信