基于自适应相对裕度的在线低秩相似函数学习

Yiling Wu, Shuhui Wang, W. Zhang, Qingming Huang
{"title":"基于自适应相对裕度的在线低秩相似函数学习","authors":"Yiling Wu, Shuhui Wang, W. Zhang, Qingming Huang","doi":"10.1109/ICME.2017.8019528","DOIUrl":null,"url":null,"abstract":"This paper presents a Cross-Modal Online Low-Rank Similarity function learning method (CMOLRS) for cross-modal retrieval, which learns a low-rank bilinear similarity measure on data from different modalities. CMOLRS models the cross-modal relations by relative similarities on a set of training data triplets and formulates the relative relations as convex hinge loss functions. By adapting the margin of hinge loss using information from feature space and label space for each triplet, CMOLRS effectively captures the multi-level semantic correlation among cross-modal data. The similarity function is learned by online learning in the manifold of low-rank matrices, thus good scalability is gained when processing large scale datasets. Extensive experiments are conducted on three public datasets. Comparisons with the state-of-the-art methods show the effectiveness and efficiency of our approach.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Online low-rank similarity function learning with adaptive relative margin for cross-modal retrieval\",\"authors\":\"Yiling Wu, Shuhui Wang, W. Zhang, Qingming Huang\",\"doi\":\"10.1109/ICME.2017.8019528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Cross-Modal Online Low-Rank Similarity function learning method (CMOLRS) for cross-modal retrieval, which learns a low-rank bilinear similarity measure on data from different modalities. CMOLRS models the cross-modal relations by relative similarities on a set of training data triplets and formulates the relative relations as convex hinge loss functions. By adapting the margin of hinge loss using information from feature space and label space for each triplet, CMOLRS effectively captures the multi-level semantic correlation among cross-modal data. The similarity function is learned by online learning in the manifold of low-rank matrices, thus good scalability is gained when processing large scale datasets. Extensive experiments are conducted on three public datasets. Comparisons with the state-of-the-art methods show the effectiveness and efficiency of our approach.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种用于跨模态检索的在线低秩相似函数学习方法(CMOLRS),该方法对不同模态的数据学习低秩双线性相似度量。CMOLRS通过一组训练数据三元组的相对相似度对跨模态关系进行建模,并将相对关系表示为凸铰损失函数。CMOLRS利用特征空间和标签空间的信息自适应铰链损失余量,有效地捕获了跨模态数据之间的多层次语义关联。通过在线学习在低秩矩阵流形中学习相似函数,在处理大规模数据集时具有良好的可扩展性。在三个公共数据集上进行了广泛的实验。与最先进的方法的比较表明了我们的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online low-rank similarity function learning with adaptive relative margin for cross-modal retrieval
This paper presents a Cross-Modal Online Low-Rank Similarity function learning method (CMOLRS) for cross-modal retrieval, which learns a low-rank bilinear similarity measure on data from different modalities. CMOLRS models the cross-modal relations by relative similarities on a set of training data triplets and formulates the relative relations as convex hinge loss functions. By adapting the margin of hinge loss using information from feature space and label space for each triplet, CMOLRS effectively captures the multi-level semantic correlation among cross-modal data. The similarity function is learned by online learning in the manifold of low-rank matrices, thus good scalability is gained when processing large scale datasets. Extensive experiments are conducted on three public datasets. Comparisons with the state-of-the-art methods show the effectiveness and efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信