n - core -一种高效和可扩展的深度学习方法

Ken Namura, Johannes Maximilian Kühn, T. Adachi, H. Imachi, H. Kaneko, T. Kato, Go Watanabe, Naoto Tanaka, S. Kashihara, Hiroshi Miyashita, Y. Tomonaga, Ryosuke Okuta, Takuya Akiba, Brian K. Vogel, S. Kitajo, F. Osawa, K. Takahashi, Y. Takatsukasa, K. Mizumaru, T. Yamauchi, J. Ono, A. Takahashi, Tanvir Ahmed, Y. Doi, K. Hiraki, J. Makino
{"title":"n - core -一种高效和可扩展的深度学习方法","authors":"Ken Namura, Johannes Maximilian Kühn, T. Adachi, H. Imachi, H. Kaneko, T. Kato, Go Watanabe, Naoto Tanaka, S. Kashihara, Hiroshi Miyashita, Y. Tomonaga, Ryosuke Okuta, Takuya Akiba, Brian K. Vogel, S. Kitajo, F. Osawa, K. Takahashi, Y. Takatsukasa, K. Mizumaru, T. Yamauchi, J. Ono, A. Takahashi, Tanvir Ahmed, Y. Doi, K. Hiraki, J. Makino","doi":"10.23919/VLSICircuits52068.2021.9492395","DOIUrl":null,"url":null,"abstract":"MN-Core is a highly efficient deep learning training accelerator reaching in excess of 1 TFLOPS/W (half-precision) at board level in real-world mixed-precision workloads. To reach and sustain this level of performance, the design is partitioned and packaged as four-die MCM package exceeding 3000mm2 of die area.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MN-Core - A Highly Efficient and Scalable Approach to Deep Learning\",\"authors\":\"Ken Namura, Johannes Maximilian Kühn, T. Adachi, H. Imachi, H. Kaneko, T. Kato, Go Watanabe, Naoto Tanaka, S. Kashihara, Hiroshi Miyashita, Y. Tomonaga, Ryosuke Okuta, Takuya Akiba, Brian K. Vogel, S. Kitajo, F. Osawa, K. Takahashi, Y. Takatsukasa, K. Mizumaru, T. Yamauchi, J. Ono, A. Takahashi, Tanvir Ahmed, Y. Doi, K. Hiraki, J. Makino\",\"doi\":\"10.23919/VLSICircuits52068.2021.9492395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MN-Core is a highly efficient deep learning training accelerator reaching in excess of 1 TFLOPS/W (half-precision) at board level in real-world mixed-precision workloads. To reach and sustain this level of performance, the design is partitioned and packaged as four-die MCM package exceeding 3000mm2 of die area.\",\"PeriodicalId\":106356,\"journal\":{\"name\":\"2021 Symposium on VLSI Circuits\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSICircuits52068.2021.9492395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

MN-Core是一款高效的深度学习训练加速器,在实际的混合精度工作负载中,在板级达到超过1 TFLOPS/W(半精度)。为了达到并维持这一性能水平,该设计被分割并封装为超过3000mm2的四模MCM封装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MN-Core - A Highly Efficient and Scalable Approach to Deep Learning
MN-Core is a highly efficient deep learning training accelerator reaching in excess of 1 TFLOPS/W (half-precision) at board level in real-world mixed-precision workloads. To reach and sustain this level of performance, the design is partitioned and packaged as four-die MCM package exceeding 3000mm2 of die area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信