角中心高斯和沃森混合模型在运动任务中评估动态功能脑连接

A. S. Olsen, Emil Ortvald, K.H. Madsen, Mikkel N. Schmidt, Morten Mørup
{"title":"角中心高斯和沃森混合模型在运动任务中评估动态功能脑连接","authors":"A. S. Olsen, Emil Ortvald, K.H. Madsen, Mikkel N. Schmidt, Morten Mørup","doi":"10.1109/ICASSPW59220.2023.10193021","DOIUrl":null,"url":null,"abstract":"The development of appropriate models for dynamic functional connectivity is imperative to gain a better understanding of the brain both during rest and while performing a task. Leading eigenvector dynamics analysis is among the favored methods for assessing frame-wise connectivity, but eigenvectors are distributed on the sign-symmetric unit hypersphere, which is typically disregarded during modeling. Here we develop both mixture model and Hidden Markov model formulations for two sign-symmetric spherical statistical distributions and display their performance on synthetic data and task-fMRI data involving a finger-tapping task.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angular Central Gaussian and Watson Mixture Models for Assessing Dynamic Functional Brain Connectivity During a Motor Task\",\"authors\":\"A. S. Olsen, Emil Ortvald, K.H. Madsen, Mikkel N. Schmidt, Morten Mørup\",\"doi\":\"10.1109/ICASSPW59220.2023.10193021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of appropriate models for dynamic functional connectivity is imperative to gain a better understanding of the brain both during rest and while performing a task. Leading eigenvector dynamics analysis is among the favored methods for assessing frame-wise connectivity, but eigenvectors are distributed on the sign-symmetric unit hypersphere, which is typically disregarded during modeling. Here we develop both mixture model and Hidden Markov model formulations for two sign-symmetric spherical statistical distributions and display their performance on synthetic data and task-fMRI data involving a finger-tapping task.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地了解休息和执行任务时的大脑,开发适当的动态功能连接模型是必不可少的。领先特征向量动力学分析是评估帧间连通性的首选方法之一,但特征向量分布在符号对称的单位超球上,这在建模过程中通常被忽略。在这里,我们建立了两个符号对称球形统计分布的混合模型和隐马尔可夫模型公式,并展示了它们在合成数据和涉及手指敲击任务的任务- fmri数据上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angular Central Gaussian and Watson Mixture Models for Assessing Dynamic Functional Brain Connectivity During a Motor Task
The development of appropriate models for dynamic functional connectivity is imperative to gain a better understanding of the brain both during rest and while performing a task. Leading eigenvector dynamics analysis is among the favored methods for assessing frame-wise connectivity, but eigenvectors are distributed on the sign-symmetric unit hypersphere, which is typically disregarded during modeling. Here we develop both mixture model and Hidden Markov model formulations for two sign-symmetric spherical statistical distributions and display their performance on synthetic data and task-fMRI data involving a finger-tapping task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信