基于轨迹的融合神经网络动态手写识别

Tzu-An Huang, Sai-Keung Wong, Lan-Da Van
{"title":"基于轨迹的融合神经网络动态手写识别","authors":"Tzu-An Huang, Sai-Keung Wong, Lan-Da Van","doi":"10.1109/TAAI54685.2021.00011","DOIUrl":null,"url":null,"abstract":"We propose a fusion network model for handwriting recognition. The model consists of a feedforward fully connected neural network (FNN) and a convolutional neural network (CNN). For a given handwriting trajectory, we generate two types of inputs for the FNN and CNN networks, respectively. Each of the networks produces a confidence vector for a handwriting trajectory. Subsequently, the fused result is the element-wise product of the two confidence vectors. We evaluated the proposed fusion network on two data sets, namely RTD and 6DMG, which contain alphabetic and numeric handwriting data. Five-fold cross validation was adopted. The average accuracy of our fusion network achieved 99.77% on the alphabetic data and 99.83% on the numeric data of the 6DMG data set, and 99.61% on the RTD data set. Finally, we compared the fusion network with three state-of-the-art techniques.","PeriodicalId":343821,"journal":{"name":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory-Based Dynamic Handwriting Recognition Using Fusion Neural Network\",\"authors\":\"Tzu-An Huang, Sai-Keung Wong, Lan-Da Van\",\"doi\":\"10.1109/TAAI54685.2021.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fusion network model for handwriting recognition. The model consists of a feedforward fully connected neural network (FNN) and a convolutional neural network (CNN). For a given handwriting trajectory, we generate two types of inputs for the FNN and CNN networks, respectively. Each of the networks produces a confidence vector for a handwriting trajectory. Subsequently, the fused result is the element-wise product of the two confidence vectors. We evaluated the proposed fusion network on two data sets, namely RTD and 6DMG, which contain alphabetic and numeric handwriting data. Five-fold cross validation was adopted. The average accuracy of our fusion network achieved 99.77% on the alphabetic data and 99.83% on the numeric data of the 6DMG data set, and 99.61% on the RTD data set. Finally, we compared the fusion network with three state-of-the-art techniques.\",\"PeriodicalId\":343821,\"journal\":{\"name\":\"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI54685.2021.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI54685.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于手写识别的融合网络模型。该模型由前馈全连接神经网络(FNN)和卷积神经网络(CNN)组成。对于给定的手写轨迹,我们分别为FNN和CNN网络生成两种类型的输入。每个网络都会产生笔迹轨迹的置信向量。随后,融合结果是两个置信向量的逐元素积。我们在包含字母和数字笔迹数据的RTD和6DMG两个数据集上对所提出的融合网络进行了评估。采用五重交叉验证。6DMG数据集的字母数据和数字数据的平均准确率分别达到99.77%和99.83%,RTD数据集的平均准确率达到99.61%。最后,我们将融合网络与三种最新技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory-Based Dynamic Handwriting Recognition Using Fusion Neural Network
We propose a fusion network model for handwriting recognition. The model consists of a feedforward fully connected neural network (FNN) and a convolutional neural network (CNN). For a given handwriting trajectory, we generate two types of inputs for the FNN and CNN networks, respectively. Each of the networks produces a confidence vector for a handwriting trajectory. Subsequently, the fused result is the element-wise product of the two confidence vectors. We evaluated the proposed fusion network on two data sets, namely RTD and 6DMG, which contain alphabetic and numeric handwriting data. Five-fold cross validation was adopted. The average accuracy of our fusion network achieved 99.77% on the alphabetic data and 99.83% on the numeric data of the 6DMG data set, and 99.61% on the RTD data set. Finally, we compared the fusion network with three state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信