利用店内传感器进行重访预测

Sundong Kim, Jae-Gil Lee
{"title":"利用店内传感器进行重访预测","authors":"Sundong Kim, Jae-Gil Lee","doi":"10.1109/ICDM.2018.00037","DOIUrl":null,"url":null,"abstract":"Predicting revisit intention is very important for the retail industry. Converting first-time visitors to repeating customers is of prime importance for high profitability. However, revisit analyses for offline retail businesses have been conducted on a small scale in previous studies, mainly because their methodologies have mostly relied on manually collected data. With the help of noninvasive monitoring, analyzing a customer's behavior inside stores has become possible, and revisit statistics are available from the large portion of customers who turn on their Wi-Fi or Bluetooth devices. Using Wi-Fi fingerprinting data from ZOYI, we propose a systematic framework to predict the revisit intention of customers using only signals received from their mobile devices. Using data collected from seven flagship stores in downtown Seoul, we achieved 67-80% prediction accuracy for all customers and 64-72% prediction accuracy for first-time visitors. The performance improvement by considering customer mobility was 4.7-24.3%. Our framework showed a feasibility to predict revisits using customer mobility from Wi-Fi signals, that have not been considered in previous marketing studies. Toward this goal, we examine the effect of data collection period on the prediction performance and present the robustness of our model on missing customers. Finally, we discuss the difficulties of securing prediction accuracy with the features that look promising but turn out to be unsatisfactory.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Utilizing In-store Sensors for Revisit Prediction\",\"authors\":\"Sundong Kim, Jae-Gil Lee\",\"doi\":\"10.1109/ICDM.2018.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting revisit intention is very important for the retail industry. Converting first-time visitors to repeating customers is of prime importance for high profitability. However, revisit analyses for offline retail businesses have been conducted on a small scale in previous studies, mainly because their methodologies have mostly relied on manually collected data. With the help of noninvasive monitoring, analyzing a customer's behavior inside stores has become possible, and revisit statistics are available from the large portion of customers who turn on their Wi-Fi or Bluetooth devices. Using Wi-Fi fingerprinting data from ZOYI, we propose a systematic framework to predict the revisit intention of customers using only signals received from their mobile devices. Using data collected from seven flagship stores in downtown Seoul, we achieved 67-80% prediction accuracy for all customers and 64-72% prediction accuracy for first-time visitors. The performance improvement by considering customer mobility was 4.7-24.3%. Our framework showed a feasibility to predict revisits using customer mobility from Wi-Fi signals, that have not been considered in previous marketing studies. Toward this goal, we examine the effect of data collection period on the prediction performance and present the robustness of our model on missing customers. Finally, we discuss the difficulties of securing prediction accuracy with the features that look promising but turn out to be unsatisfactory.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

预测回访意向对于零售业来说是非常重要的。将首次访问者转化为回头客对高盈利至关重要。然而,在之前的研究中,对线下零售企业的重访分析规模较小,主要是因为它们的方法大多依赖于人工收集的数据。在非侵入性监控的帮助下,分析顾客在商店内的行为已经成为可能,并且可以从大部分打开Wi-Fi或蓝牙设备的顾客那里获得重新访问的统计数据。利用ZOYI的Wi-Fi指纹数据,我们提出了一个系统框架,仅使用从其移动设备接收的信号来预测客户的重访意图。利用从首尔市中心的7家旗舰店收集的数据,我们对所有顾客的预测准确率达到67-80%,对首次光顾的顾客的预测准确率达到64-72%。考虑客户移动性的绩效提升率为4.7% -24.3%。我们的框架显示了利用Wi-Fi信号的客户移动性来预测回访的可行性,这在以前的营销研究中没有被考虑到。为了实现这一目标,我们研究了数据收集周期对预测性能的影响,并展示了我们的模型对缺失客户的鲁棒性。最后,我们讨论了确保预测准确性的困难,这些特征看起来很有希望,但结果却不令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing In-store Sensors for Revisit Prediction
Predicting revisit intention is very important for the retail industry. Converting first-time visitors to repeating customers is of prime importance for high profitability. However, revisit analyses for offline retail businesses have been conducted on a small scale in previous studies, mainly because their methodologies have mostly relied on manually collected data. With the help of noninvasive monitoring, analyzing a customer's behavior inside stores has become possible, and revisit statistics are available from the large portion of customers who turn on their Wi-Fi or Bluetooth devices. Using Wi-Fi fingerprinting data from ZOYI, we propose a systematic framework to predict the revisit intention of customers using only signals received from their mobile devices. Using data collected from seven flagship stores in downtown Seoul, we achieved 67-80% prediction accuracy for all customers and 64-72% prediction accuracy for first-time visitors. The performance improvement by considering customer mobility was 4.7-24.3%. Our framework showed a feasibility to predict revisits using customer mobility from Wi-Fi signals, that have not been considered in previous marketing studies. Toward this goal, we examine the effect of data collection period on the prediction performance and present the robustness of our model on missing customers. Finally, we discuss the difficulties of securing prediction accuracy with the features that look promising but turn out to be unsatisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信