信息抽取语言的词汇匹配

P. Bednar
{"title":"信息抽取语言的词汇匹配","authors":"P. Bednar","doi":"10.1109/SAMI.2017.7880292","DOIUrl":null,"url":null,"abstract":"In the previous paper [1], we have described specification of the domain-specific declarative language for natural language processing and information extraction tasks. This paper extends the previous specification of the language with the extensions, which allow to specify sequences of words and corresponding meta-data annotations in the vocabulary. The paper describes syntax extensions and internal structure of the vocabulary designed for efficient matching and low storage requirements.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vocabulary matching for information extraction language\",\"authors\":\"P. Bednar\",\"doi\":\"10.1109/SAMI.2017.7880292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the previous paper [1], we have described specification of the domain-specific declarative language for natural language processing and information extraction tasks. This paper extends the previous specification of the language with the extensions, which allow to specify sequences of words and corresponding meta-data annotations in the vocabulary. The paper describes syntax extensions and internal structure of the vocabulary designed for efficient matching and low storage requirements.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在之前的论文[1]中,我们描述了用于自然语言处理和信息提取任务的特定领域声明性语言的规范。本文使用扩展扩展扩展了先前的语言规范,允许在词汇表中指定单词序列和相应的元数据注释。本文描述了为实现高效匹配和低存储要求而设计的词汇表的语法扩展和内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vocabulary matching for information extraction language
In the previous paper [1], we have described specification of the domain-specific declarative language for natural language processing and information extraction tasks. This paper extends the previous specification of the language with the extensions, which allow to specify sequences of words and corresponding meta-data annotations in the vocabulary. The paper describes syntax extensions and internal structure of the vocabulary designed for efficient matching and low storage requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信