A. Eddiai, M. Meddad, A. Hajjaji, D. Guyomar, Y. Boughaleb, B. Sahraoui
{"title":"能量收集用电致伸缩聚合物性能的力学影响","authors":"A. Eddiai, M. Meddad, A. Hajjaji, D. Guyomar, Y. Boughaleb, B. Sahraoui","doi":"10.1109/ICTON.2012.6253823","DOIUrl":null,"url":null,"abstract":"Recent trends in energy conversion mechanisms have demonstrated the abilities of electrostrictive polymers for converting mechanical vibrations into electricity. In particular, such materials present advantageous features such as a high productivity, high flexibility, and ease of processing; hence, the application of these materials for energy harvesting purposes has been of significant interest over the last few years. The purpose of this paper is to propose the mechanical effect on the performance of electrostrictive polymers for energy harvesting. when the sample simultaneously driven by an electrical field and a mechanical excitation. Experimental measurements of the harvested power has been compared with the theoretical behavior predicted by the proposed model. A good agreement was observed between the experimental and the theoretical results. Finally, the results indicated that the strain was the crucial parameter for a good efficiency of the electromechanical conversion with electrostrictive polymers.","PeriodicalId":217442,"journal":{"name":"2012 14th International Conference on Transparent Optical Networks (ICTON)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mechanical effect on the performance of electrostrictive polymers for energy harvesting\",\"authors\":\"A. Eddiai, M. Meddad, A. Hajjaji, D. Guyomar, Y. Boughaleb, B. Sahraoui\",\"doi\":\"10.1109/ICTON.2012.6253823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent trends in energy conversion mechanisms have demonstrated the abilities of electrostrictive polymers for converting mechanical vibrations into electricity. In particular, such materials present advantageous features such as a high productivity, high flexibility, and ease of processing; hence, the application of these materials for energy harvesting purposes has been of significant interest over the last few years. The purpose of this paper is to propose the mechanical effect on the performance of electrostrictive polymers for energy harvesting. when the sample simultaneously driven by an electrical field and a mechanical excitation. Experimental measurements of the harvested power has been compared with the theoretical behavior predicted by the proposed model. A good agreement was observed between the experimental and the theoretical results. Finally, the results indicated that the strain was the crucial parameter for a good efficiency of the electromechanical conversion with electrostrictive polymers.\",\"PeriodicalId\":217442,\"journal\":{\"name\":\"2012 14th International Conference on Transparent Optical Networks (ICTON)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th International Conference on Transparent Optical Networks (ICTON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTON.2012.6253823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Transparent Optical Networks (ICTON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2012.6253823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical effect on the performance of electrostrictive polymers for energy harvesting
Recent trends in energy conversion mechanisms have demonstrated the abilities of electrostrictive polymers for converting mechanical vibrations into electricity. In particular, such materials present advantageous features such as a high productivity, high flexibility, and ease of processing; hence, the application of these materials for energy harvesting purposes has been of significant interest over the last few years. The purpose of this paper is to propose the mechanical effect on the performance of electrostrictive polymers for energy harvesting. when the sample simultaneously driven by an electrical field and a mechanical excitation. Experimental measurements of the harvested power has been compared with the theoretical behavior predicted by the proposed model. A good agreement was observed between the experimental and the theoretical results. Finally, the results indicated that the strain was the crucial parameter for a good efficiency of the electromechanical conversion with electrostrictive polymers.