基于关系聚合的RFID室内定位

Jiali Zheng, Tuanfa Qin, Jieming Wu, Li Wan
{"title":"基于关系聚合的RFID室内定位","authors":"Jiali Zheng, Tuanfa Qin, Jieming Wu, Li Wan","doi":"10.1109/ICACI.2016.7449800","DOIUrl":null,"url":null,"abstract":"This paper proposes a relational aggregation algorithm based on Radio Frequency Identification (RFID) to achieve accurate indoor localization. The proposed algorithm is composed of three steps: (1) exploring the relationship between reader received power and distance information then estimating Euclid distance of signal strength; (2) employing k-Nearest Neighbour algorithm to aggregate the relationship between nearest reference tag and target tag; (3) optimizing relational aggregation operator to obtain the coordinate of target tag. Simulated experiments show that the proposed algorithm can reduce mean localization error effectively and improve the accuracy of indoor localization.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"RFID indoor localization based on relational aggregation\",\"authors\":\"Jiali Zheng, Tuanfa Qin, Jieming Wu, Li Wan\",\"doi\":\"10.1109/ICACI.2016.7449800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a relational aggregation algorithm based on Radio Frequency Identification (RFID) to achieve accurate indoor localization. The proposed algorithm is composed of three steps: (1) exploring the relationship between reader received power and distance information then estimating Euclid distance of signal strength; (2) employing k-Nearest Neighbour algorithm to aggregate the relationship between nearest reference tag and target tag; (3) optimizing relational aggregation operator to obtain the coordinate of target tag. Simulated experiments show that the proposed algorithm can reduce mean localization error effectively and improve the accuracy of indoor localization.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于射频识别(RFID)的关系聚合算法来实现精确的室内定位。该算法由三个步骤组成:(1)探索读写器接收功率与距离信息的关系,然后估计信号强度的欧几里得距离;(2)采用k近邻算法对最近参考标签与目标标签之间的关系进行聚合;(3)优化关系聚合算子,获得目标标签坐标。仿真实验表明,该算法能有效降低平均定位误差,提高室内定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RFID indoor localization based on relational aggregation
This paper proposes a relational aggregation algorithm based on Radio Frequency Identification (RFID) to achieve accurate indoor localization. The proposed algorithm is composed of three steps: (1) exploring the relationship between reader received power and distance information then estimating Euclid distance of signal strength; (2) employing k-Nearest Neighbour algorithm to aggregate the relationship between nearest reference tag and target tag; (3) optimizing relational aggregation operator to obtain the coordinate of target tag. Simulated experiments show that the proposed algorithm can reduce mean localization error effectively and improve the accuracy of indoor localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信