你的AP知道你如何移动:通过WiFi进行细粒度的设备动作识别

Yunze Zeng, P. Pathak, Chao Xu, P. Mohapatra
{"title":"你的AP知道你如何移动:通过WiFi进行细粒度的设备动作识别","authors":"Yunze Zeng, P. Pathak, Chao Xu, P. Mohapatra","doi":"10.1145/2643614.2643620","DOIUrl":null,"url":null,"abstract":"Recent WiFi standards use Channel State Information (CSI) feedback for better MIMO and rate adaptation. CSI provides detailed information about current channel conditions for different subcarriers and spatial streams. In this paper, we show that CSI feedback from a client to the AP can be used to recognize different fine-grained motions of the client. We find that CSI can not only identify if the client is in motion or not, but also classify different types of motions. To this end, we propose APsense, a framework that uses CSI to estimate the sensor patterns of the client. It is observed that client's sensor (e.g. accelerometer) values are correlated to CSI values available at the AP. We show that using simple machine learning classifiers, APsense can classify different motions with accuracy as high as 90%.","PeriodicalId":399028,"journal":{"name":"Proceedings of the 1st ACM workshop on Hot topics in wireless","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Your AP knows how you move: fine-grained device motion recognition through WiFi\",\"authors\":\"Yunze Zeng, P. Pathak, Chao Xu, P. Mohapatra\",\"doi\":\"10.1145/2643614.2643620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent WiFi standards use Channel State Information (CSI) feedback for better MIMO and rate adaptation. CSI provides detailed information about current channel conditions for different subcarriers and spatial streams. In this paper, we show that CSI feedback from a client to the AP can be used to recognize different fine-grained motions of the client. We find that CSI can not only identify if the client is in motion or not, but also classify different types of motions. To this end, we propose APsense, a framework that uses CSI to estimate the sensor patterns of the client. It is observed that client's sensor (e.g. accelerometer) values are correlated to CSI values available at the AP. We show that using simple machine learning classifiers, APsense can classify different motions with accuracy as high as 90%.\",\"PeriodicalId\":399028,\"journal\":{\"name\":\"Proceedings of the 1st ACM workshop on Hot topics in wireless\",\"volume\":\" 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM workshop on Hot topics in wireless\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2643614.2643620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM workshop on Hot topics in wireless","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2643614.2643620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

最近的WiFi标准使用信道状态信息(CSI)反馈来实现更好的MIMO和速率适应。CSI提供了关于不同子载波和空间流的当前信道条件的详细信息。在本文中,我们展示了从客户端到AP的CSI反馈可以用来识别客户端不同的细粒度运动。我们发现CSI不仅可以识别客户是否处于运动状态,还可以对不同类型的运动进行分类。为此,我们提出了APsense,一个使用CSI来估计客户端传感器模式的框架。可以观察到,客户端的传感器(例如加速度计)值与AP可用的CSI值相关。我们表明,使用简单的机器学习分类器,APsense可以以高达90%的准确率对不同的运动进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Your AP knows how you move: fine-grained device motion recognition through WiFi
Recent WiFi standards use Channel State Information (CSI) feedback for better MIMO and rate adaptation. CSI provides detailed information about current channel conditions for different subcarriers and spatial streams. In this paper, we show that CSI feedback from a client to the AP can be used to recognize different fine-grained motions of the client. We find that CSI can not only identify if the client is in motion or not, but also classify different types of motions. To this end, we propose APsense, a framework that uses CSI to estimate the sensor patterns of the client. It is observed that client's sensor (e.g. accelerometer) values are correlated to CSI values available at the AP. We show that using simple machine learning classifiers, APsense can classify different motions with accuracy as high as 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信