基于随机森林分类的声事件检测

Xianjun Xia, R. Togneri, Ferdous Sohel, David Huang
{"title":"基于随机森林分类的声事件检测","authors":"Xianjun Xia, R. Togneri, Ferdous Sohel, David Huang","doi":"10.1109/ICME.2017.8019452","DOIUrl":null,"url":null,"abstract":"This paper deals with the acoustic event detection (AED) to improve the detection accuracy of acoustic events. Acoustic event detection task is performed by a regression via classification (RvC) based approach along with the random forest technique. A discretization process is used to convert the continuous frame positions within acoustic events into event duration class labels. Outputs of the category-specific random forest classifiers are then reversed back to the event boundary information. Evaluations on the UPC-TALP database which consists of highly variable acoustic events demonstrate the efficiency of the proposed approaches with improvements in detection error rate compared to the best baseline system.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Random forest classification based acoustic event detection\",\"authors\":\"Xianjun Xia, R. Togneri, Ferdous Sohel, David Huang\",\"doi\":\"10.1109/ICME.2017.8019452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the acoustic event detection (AED) to improve the detection accuracy of acoustic events. Acoustic event detection task is performed by a regression via classification (RvC) based approach along with the random forest technique. A discretization process is used to convert the continuous frame positions within acoustic events into event duration class labels. Outputs of the category-specific random forest classifiers are then reversed back to the event boundary information. Evaluations on the UPC-TALP database which consists of highly variable acoustic events demonstrate the efficiency of the proposed approaches with improvements in detection error rate compared to the best baseline system.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

为了提高声事件的检测精度,本文对声事件检测技术进行了研究。基于分类回归(RvC)方法,结合随机森林技术完成声事件检测任务。采用离散化处理将声事件内的连续帧位置转换为事件持续时间类标签。然后将特定于类别的随机森林分类器的输出转回事件边界信息。对UPC-TALP数据库(由高度可变的声学事件组成)的评估表明,与最佳基线系统相比,所提出的方法在检测错误率方面有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random forest classification based acoustic event detection
This paper deals with the acoustic event detection (AED) to improve the detection accuracy of acoustic events. Acoustic event detection task is performed by a regression via classification (RvC) based approach along with the random forest technique. A discretization process is used to convert the continuous frame positions within acoustic events into event duration class labels. Outputs of the category-specific random forest classifiers are then reversed back to the event boundary information. Evaluations on the UPC-TALP database which consists of highly variable acoustic events demonstrate the efficiency of the proposed approaches with improvements in detection error rate compared to the best baseline system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信