基于深度神经网络的多层磁记录检测与部分响应均衡

Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood
{"title":"基于深度神经网络的多层磁记录检测与部分响应均衡","authors":"Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood","doi":"10.1109/TMRC49521.2020.9366719","DOIUrl":null,"url":null,"abstract":"The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording\",\"authors\":\"Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood\",\"doi\":\"10.1109/TMRC49521.2020.9366719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.\",\"PeriodicalId\":131361,\"journal\":{\"name\":\"2020 IEEE 31st Magnetic Recording Conference (TMRC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 31st Magnetic Recording Conference (TMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMRC49521.2020.9366719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硬盘驱动器(HDD)行业存储数据的面密度接近一维(1D)磁记录通道[1]的容量极限。增加密度的新技术正在出现,包括热辅助磁记录(HAMR),微波辅助磁记录(MAMR)和二维磁记录(TDMR)。TDMR采用二维信号处理来获得显著的密度增益,而无需改变现有的磁性介质。最近令人鼓舞的研究[2]-[5]提出了多层磁记录(MLMR):在TDMR系统上垂直堆叠额外的磁介质层,以获得进一步的密度增益。利用真实的颗粒翻转概率(GFP)模型生成[3],[4]波形,研究了基于深度神经网络(DNN)的MLMR均衡和检测方法的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording
The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信