基于神经网络描述符的大规模图像检索

David Novak, Michal Batko, P. Zezula
{"title":"基于神经网络描述符的大规模图像检索","authors":"David Novak, Michal Batko, P. Zezula","doi":"10.1145/2766462.2767868","DOIUrl":null,"url":null,"abstract":"One of current big challenges in computer science is\ndevelopment of data management and retrieval techniques that\nwould keep pace with the evolution of contemporary data and\nwith the growing expectations on data processing. Various\ndigital images became a common part of both public and\nenterprise data collections and there is a natural requirement\nthat the retrieval should consider more the actual visual\ncontent of the image data. In our demonstration, we aim at the\ntask of retrieving images that are visually and semantically\nsimilar to a given example image; the system should be able to\nonline evaluate k nearest neighbor queries within a collection\ncontaining tens of millions of images. The applicability of\nsuch a system would be, for instance, on stock photography\nsites, in e-shops searching in product photos, or in\ncollections from a constrained Web image search.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Large-scale Image Retrieval using Neural Net Descriptors\",\"authors\":\"David Novak, Michal Batko, P. Zezula\",\"doi\":\"10.1145/2766462.2767868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of current big challenges in computer science is\\ndevelopment of data management and retrieval techniques that\\nwould keep pace with the evolution of contemporary data and\\nwith the growing expectations on data processing. Various\\ndigital images became a common part of both public and\\nenterprise data collections and there is a natural requirement\\nthat the retrieval should consider more the actual visual\\ncontent of the image data. In our demonstration, we aim at the\\ntask of retrieving images that are visually and semantically\\nsimilar to a given example image; the system should be able to\\nonline evaluate k nearest neighbor queries within a collection\\ncontaining tens of millions of images. The applicability of\\nsuch a system would be, for instance, on stock photography\\nsites, in e-shops searching in product photos, or in\\ncollections from a constrained Web image search.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

当前计算机科学面临的重大挑战之一是数据管理和检索技术的发展,以跟上当代数据的发展和对数据处理日益增长的期望。各种数字图像成为公共和企业数据收集的共同组成部分,自然要求检索应更多地考虑图像数据的实际视觉内容。在我们的演示中,我们的目标是检索与给定示例图像在视觉和语义上相似的图像;系统应该能够在线评估包含数千万张图像的集合中的k个最近邻查询。这样一个系统的适用性将是,例如,在库存照片,在电子商店中搜索产品照片,或从一个受限的Web图像搜索集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale Image Retrieval using Neural Net Descriptors
One of current big challenges in computer science is development of data management and retrieval techniques that would keep pace with the evolution of contemporary data and with the growing expectations on data processing. Various digital images became a common part of both public and enterprise data collections and there is a natural requirement that the retrieval should consider more the actual visual content of the image data. In our demonstration, we aim at the task of retrieving images that are visually and semantically similar to a given example image; the system should be able to online evaluate k nearest neighbor queries within a collection containing tens of millions of images. The applicability of such a system would be, for instance, on stock photography sites, in e-shops searching in product photos, or in collections from a constrained Web image search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信