{"title":"集成电路封装现场分析的分层建模和可扩展算法","authors":"Z. Peng, Yang Shao, Shu Wang","doi":"10.1109/EPEPS.2015.7347125","DOIUrl":null,"url":null,"abstract":"The objective of this work is to investigate high-resolution and high-performance computational methods for the first-principles analysis of in-situ product-level integrated circuit (IC) packages. The novelties and key technical approaches of the proposed work include: (i) a scalable geometry-based domain decomposition (DD) method to conquer the geometric complexity of physical domain, which leads to quasi-optimal convergence that is provably scalable for multi-scale objects. Moreover, it results in parallel and scalable computational algorithms to reduce the time complexity via high performance computing facilities; (ii) a hierarchical multi-scale simulator for high-definition IC package systems, in which the technical ingredients include a skeleton-based multi-region multi-solver method and a variational macro-micro analysis for multi-scale modeling. The capability and benefits of the algorithms are explored and illustrated through several real-world 3D IC package applications.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical modeling and scalable algorithms for in-situ analysis of integrated circuit packages\",\"authors\":\"Z. Peng, Yang Shao, Shu Wang\",\"doi\":\"10.1109/EPEPS.2015.7347125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to investigate high-resolution and high-performance computational methods for the first-principles analysis of in-situ product-level integrated circuit (IC) packages. The novelties and key technical approaches of the proposed work include: (i) a scalable geometry-based domain decomposition (DD) method to conquer the geometric complexity of physical domain, which leads to quasi-optimal convergence that is provably scalable for multi-scale objects. Moreover, it results in parallel and scalable computational algorithms to reduce the time complexity via high performance computing facilities; (ii) a hierarchical multi-scale simulator for high-definition IC package systems, in which the technical ingredients include a skeleton-based multi-region multi-solver method and a variational macro-micro analysis for multi-scale modeling. The capability and benefits of the algorithms are explored and illustrated through several real-world 3D IC package applications.\",\"PeriodicalId\":191549,\"journal\":{\"name\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2015.7347125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2015.7347125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical modeling and scalable algorithms for in-situ analysis of integrated circuit packages
The objective of this work is to investigate high-resolution and high-performance computational methods for the first-principles analysis of in-situ product-level integrated circuit (IC) packages. The novelties and key technical approaches of the proposed work include: (i) a scalable geometry-based domain decomposition (DD) method to conquer the geometric complexity of physical domain, which leads to quasi-optimal convergence that is provably scalable for multi-scale objects. Moreover, it results in parallel and scalable computational algorithms to reduce the time complexity via high performance computing facilities; (ii) a hierarchical multi-scale simulator for high-definition IC package systems, in which the technical ingredients include a skeleton-based multi-region multi-solver method and a variational macro-micro analysis for multi-scale modeling. The capability and benefits of the algorithms are explored and illustrated through several real-world 3D IC package applications.