线性和非线性自适应网络的时间序列预测

J. Coughlin, R. Baran
{"title":"线性和非线性自适应网络的时间序列预测","authors":"J. Coughlin, R. Baran","doi":"10.1109/IJCNN.1991.170431","DOIUrl":null,"url":null,"abstract":"Backpropagation networks with a single hidden layer were trained to perform one-step prediction on a variety of scalar time series. The performance of such nets typically equals or exceeds that of the linear adaptive predictor of the same order. Comparisons of the linear and nonlinear predictors were made with periodic, chaotic, and random time series, including broadband ocean acoustic ambient noise.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Time series prediction with linear and nonlinear adaptive networks\",\"authors\":\"J. Coughlin, R. Baran\",\"doi\":\"10.1109/IJCNN.1991.170431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backpropagation networks with a single hidden layer were trained to perform one-step prediction on a variety of scalar time series. The performance of such nets typically equals or exceeds that of the linear adaptive predictor of the same order. Comparisons of the linear and nonlinear predictors were made with periodic, chaotic, and random time series, including broadband ocean acoustic ambient noise.<<ETX>>\",\"PeriodicalId\":211135,\"journal\":{\"name\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1991.170431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对具有单个隐藏层的反向传播网络进行了训练,使其能够对各种标量时间序列进行一步预测。这种网络的性能通常等于或超过同阶的线性自适应预测器。对包括宽带海洋声环境噪声在内的周期、混沌和随机时间序列进行了线性和非线性预测的比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time series prediction with linear and nonlinear adaptive networks
Backpropagation networks with a single hidden layer were trained to perform one-step prediction on a variety of scalar time series. The performance of such nets typically equals or exceeds that of the linear adaptive predictor of the same order. Comparisons of the linear and nonlinear predictors were made with periodic, chaotic, and random time series, including broadband ocean acoustic ambient noise.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信