{"title":"基于gis的景观规划项目移动可视化增强现实应用","authors":"J. Kilimann, Denis Heitkamp, P. Lensing","doi":"10.1145/3359997.3365712","DOIUrl":null,"url":null,"abstract":"We introduce an augmented reality application that allows the representation of planned real world objects (e.g. wind turbines or power poles) at their actual geographic location. The application uses GPS for positioning, which is then supplemented by augmented reality feature tracking to get a constant and stable positional and rotational reading. As addition to the visualization, we use on-the-fly gathered sensor data to identify foreground objects. Thus, for practical scenarios our application depicts images with mostly correct occlusion between real and virtual objects. The application will be used to support urban and landscape planners in their process, especially for the purpose of public information and acceptance. It provides an advantage to current planning processes, where the representation of objects is limited to positions on maps, miniature models, or at best a photo montage where the object is placed into a still camera image.","PeriodicalId":448139,"journal":{"name":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Augmented Reality Application for Mobile Visualization of GIS-Referenced Landscape Planning Projects\",\"authors\":\"J. Kilimann, Denis Heitkamp, P. Lensing\",\"doi\":\"10.1145/3359997.3365712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an augmented reality application that allows the representation of planned real world objects (e.g. wind turbines or power poles) at their actual geographic location. The application uses GPS for positioning, which is then supplemented by augmented reality feature tracking to get a constant and stable positional and rotational reading. As addition to the visualization, we use on-the-fly gathered sensor data to identify foreground objects. Thus, for practical scenarios our application depicts images with mostly correct occlusion between real and virtual objects. The application will be used to support urban and landscape planners in their process, especially for the purpose of public information and acceptance. It provides an advantage to current planning processes, where the representation of objects is limited to positions on maps, miniature models, or at best a photo montage where the object is placed into a still camera image.\",\"PeriodicalId\":448139,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3359997.3365712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359997.3365712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Augmented Reality Application for Mobile Visualization of GIS-Referenced Landscape Planning Projects
We introduce an augmented reality application that allows the representation of planned real world objects (e.g. wind turbines or power poles) at their actual geographic location. The application uses GPS for positioning, which is then supplemented by augmented reality feature tracking to get a constant and stable positional and rotational reading. As addition to the visualization, we use on-the-fly gathered sensor data to identify foreground objects. Thus, for practical scenarios our application depicts images with mostly correct occlusion between real and virtual objects. The application will be used to support urban and landscape planners in their process, especially for the purpose of public information and acceptance. It provides an advantage to current planning processes, where the representation of objects is limited to positions on maps, miniature models, or at best a photo montage where the object is placed into a still camera image.