{"title":"利用神经网络多任务学习提高面部表情识别性能","authors":"Jeongin Seo, Changhun Hyun, Hyeyoung Park","doi":"10.1145/2814940.2815011","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an important topic in the field of human-agent interaction, because facial expression is simple and impressive signal which human can send to others. Though there have been numerous studies on facial image analysis, the performance of expression recognition is still not acceptable due to the diversity of human expression and enormous variations in facial images. In this paper, we try to improve the performance of facial expression recognition by using multi-task learning techniques of neural networks. Through computational experiments on a benchmark database, we show positive possibility of performance improvement using multi-task learning.","PeriodicalId":427567,"journal":{"name":"Proceedings of the 3rd International Conference on Human-Agent Interaction","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Performance of Facial Expression Recognition using Multi-task Learning of Neural Networks\",\"authors\":\"Jeongin Seo, Changhun Hyun, Hyeyoung Park\",\"doi\":\"10.1145/2814940.2815011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition is an important topic in the field of human-agent interaction, because facial expression is simple and impressive signal which human can send to others. Though there have been numerous studies on facial image analysis, the performance of expression recognition is still not acceptable due to the diversity of human expression and enormous variations in facial images. In this paper, we try to improve the performance of facial expression recognition by using multi-task learning techniques of neural networks. Through computational experiments on a benchmark database, we show positive possibility of performance improvement using multi-task learning.\",\"PeriodicalId\":427567,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Human-Agent Interaction\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Human-Agent Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2814940.2815011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2814940.2815011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Performance of Facial Expression Recognition using Multi-task Learning of Neural Networks
Facial expression recognition is an important topic in the field of human-agent interaction, because facial expression is simple and impressive signal which human can send to others. Though there have been numerous studies on facial image analysis, the performance of expression recognition is still not acceptable due to the diversity of human expression and enormous variations in facial images. In this paper, we try to improve the performance of facial expression recognition by using multi-task learning techniques of neural networks. Through computational experiments on a benchmark database, we show positive possibility of performance improvement using multi-task learning.