{"title":"改进图像分类的超维计算编码方案","authors":"Victor Miranda, Olivia G. d'Aliberti","doi":"10.1109/HST56032.2022.10024980","DOIUrl":null,"url":null,"abstract":"We introduce a novel encoding scheme for hyperdimensional computing (HDC) image classification tasks that takes advantage of both spatial awareness of pixels and nonlinear relationships between pixel values using a Siamese Neural Network (SNN) architecture. We demonstrate that, using this encoding scheme, we can achieve improved classification accuracy on the MNIST and CIFAR datasets over the current state-of-the-art binary HDC encoding scheme.","PeriodicalId":162426,"journal":{"name":"2022 IEEE International Symposium on Technologies for Homeland Security (HST)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hyperdimensional Computing Encoding Schemes for Improved Image Classification\",\"authors\":\"Victor Miranda, Olivia G. d'Aliberti\",\"doi\":\"10.1109/HST56032.2022.10024980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel encoding scheme for hyperdimensional computing (HDC) image classification tasks that takes advantage of both spatial awareness of pixels and nonlinear relationships between pixel values using a Siamese Neural Network (SNN) architecture. We demonstrate that, using this encoding scheme, we can achieve improved classification accuracy on the MNIST and CIFAR datasets over the current state-of-the-art binary HDC encoding scheme.\",\"PeriodicalId\":162426,\"journal\":{\"name\":\"2022 IEEE International Symposium on Technologies for Homeland Security (HST)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Technologies for Homeland Security (HST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST56032.2022.10024980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST56032.2022.10024980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperdimensional Computing Encoding Schemes for Improved Image Classification
We introduce a novel encoding scheme for hyperdimensional computing (HDC) image classification tasks that takes advantage of both spatial awareness of pixels and nonlinear relationships between pixel values using a Siamese Neural Network (SNN) architecture. We demonstrate that, using this encoding scheme, we can achieve improved classification accuracy on the MNIST and CIFAR datasets over the current state-of-the-art binary HDC encoding scheme.