阿拉伯语语音识别的形态学和句法特征

H. Kuo, L. Mangu, Ahmad Emami, I. Zitouni
{"title":"阿拉伯语语音识别的形态学和句法特征","authors":"H. Kuo, L. Mangu, Ahmad Emami, I. Zitouni","doi":"10.1109/ICASSP.2010.5495010","DOIUrl":null,"url":null,"abstract":"In this paper, we study the use of morphological and syntactic context features to improve speech recognition of a morphologically rich language like Arabic. We examine a variety of syntactic features, including part-of-speech tags, shallow parse tags, and exposed head words and their non-terminal labels both before and after the word to be predicted. Neural network LMs are used to model these features since they generalize better to unseen events by modeling words and other context features in continuous space. Using morphological and syntactic features, we can improve the word error rate (WER) significantly on various test sets, including EVAL'08U, the unsequestered portion of the DARPA GALE Phase 3 evaluation test set.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Morphological and syntactic features for Arabic speech recognition\",\"authors\":\"H. Kuo, L. Mangu, Ahmad Emami, I. Zitouni\",\"doi\":\"10.1109/ICASSP.2010.5495010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the use of morphological and syntactic context features to improve speech recognition of a morphologically rich language like Arabic. We examine a variety of syntactic features, including part-of-speech tags, shallow parse tags, and exposed head words and their non-terminal labels both before and after the word to be predicted. Neural network LMs are used to model these features since they generalize better to unseen events by modeling words and other context features in continuous space. Using morphological and syntactic features, we can improve the word error rate (WER) significantly on various test sets, including EVAL'08U, the unsequestered portion of the DARPA GALE Phase 3 evaluation test set.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5495010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们研究了使用词形和句法上下文特征来提高像阿拉伯语这样词形丰富的语言的语音识别。我们研究了各种语法特征,包括词性标记、浅解析标记、暴露的头词及其在待预测词之前和之后的非结束标记。神经网络LMs用于建模这些特征,因为它们通过在连续空间中建模单词和其他上下文特征来更好地推广到未见过的事件。利用形态学和句法特征,我们可以显著提高多个测试集上的单词错误率(WER),包括DARPA GALE第三阶段评估测试集EVAL'08U的未分离部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological and syntactic features for Arabic speech recognition
In this paper, we study the use of morphological and syntactic context features to improve speech recognition of a morphologically rich language like Arabic. We examine a variety of syntactic features, including part-of-speech tags, shallow parse tags, and exposed head words and their non-terminal labels both before and after the word to be predicted. Neural network LMs are used to model these features since they generalize better to unseen events by modeling words and other context features in continuous space. Using morphological and syntactic features, we can improve the word error rate (WER) significantly on various test sets, including EVAL'08U, the unsequestered portion of the DARPA GALE Phase 3 evaluation test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信