用于HECC的超线程倍增器

Gabriel Gallin, A. Tisserand
{"title":"用于HECC的超线程倍增器","authors":"Gabriel Gallin, A. Tisserand","doi":"10.1109/ACSSC.2017.8335378","DOIUrl":null,"url":null,"abstract":"Modular multiplication is the most costly and common operation in hyper-elliptic curve cryptography. Over prime fields, it uses dependent partial products and reduction steps. These dependencies make FPGA implementations with fully pipelined DSP blocks difficult to optimize. We propose a new multiplier architecture with hyper-threaded capabilities. Several independent multiplications are handled in parallel for efficiently filling the pipeline and overlapping internal latencies by independent computations. It increases the silicon efficiency and leads to a better area / computation time trade-off than current state of the art. We use this hyper-threaded multiplier into small accelerators for hyper-elliptic curve cryptography in embedded systems.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hyper-threaded multiplier for HECC\",\"authors\":\"Gabriel Gallin, A. Tisserand\",\"doi\":\"10.1109/ACSSC.2017.8335378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modular multiplication is the most costly and common operation in hyper-elliptic curve cryptography. Over prime fields, it uses dependent partial products and reduction steps. These dependencies make FPGA implementations with fully pipelined DSP blocks difficult to optimize. We propose a new multiplier architecture with hyper-threaded capabilities. Several independent multiplications are handled in parallel for efficiently filling the pipeline and overlapping internal latencies by independent computations. It increases the silicon efficiency and leads to a better area / computation time trade-off than current state of the art. We use this hyper-threaded multiplier into small accelerators for hyper-elliptic curve cryptography in embedded systems.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

模乘法运算是超椭圆曲线密码系统中最昂贵、最常见的运算。在素数域上,它使用相依的偏积和约简步骤。这些依赖关系使得具有完全流水线的DSP块的FPGA实现难以优化。我们提出了一个具有超线程功能的新乘数架构。多个独立的乘法并行处理,以有效地填充管道,并通过独立计算重叠内部延迟。它提高了硅效率,并带来了比当前技术状态更好的面积/计算时间权衡。我们将这种超线程乘法器用于嵌入式系统中超椭圆曲线加密的小型加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyper-threaded multiplier for HECC
Modular multiplication is the most costly and common operation in hyper-elliptic curve cryptography. Over prime fields, it uses dependent partial products and reduction steps. These dependencies make FPGA implementations with fully pipelined DSP blocks difficult to optimize. We propose a new multiplier architecture with hyper-threaded capabilities. Several independent multiplications are handled in parallel for efficiently filling the pipeline and overlapping internal latencies by independent computations. It increases the silicon efficiency and leads to a better area / computation time trade-off than current state of the art. We use this hyper-threaded multiplier into small accelerators for hyper-elliptic curve cryptography in embedded systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信