CRISP:一个应用于结直肠癌数据的因果关系和推理搜索平台

Samuel Budd, Arno Blaas, A. Hoarfrost, K. Khezeli, Krittika D’Silva, Frank Soboczenski, Graham Mackintosh, N. Chia, John Kalantari
{"title":"CRISP:一个应用于结直肠癌数据的因果关系和推理搜索平台","authors":"Samuel Budd, Arno Blaas, A. Hoarfrost, K. Khezeli, Krittika D’Silva, Frank Soboczenski, Graham Mackintosh, N. Chia, John Kalantari","doi":"10.1109/LifeTech52111.2021.9391819","DOIUrl":null,"url":null,"abstract":"We introduce CRISP, a Causal Research and Inference Search Platform. It is designed to assist biological and medical research by applying a variety of causal discovery methods to heterogeneous and high-dimensional observational data. CRISP aims to identify a small set of input variables which are most likely to have a causal effect on a target variable. The output of CRISP, thus, highlights the most promising candidates for further targeted research. We illustrate the utility of CRISP with a case study in oncology, using a multi-omic colorectal cancer data set to identify causal drivers differentiating two subtypes of colorectal cancer.","PeriodicalId":274908,"journal":{"name":"2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prototyping CRISP: A Causal Relation and Inference Search Platform applied to Colorectal Cancer Data\",\"authors\":\"Samuel Budd, Arno Blaas, A. Hoarfrost, K. Khezeli, Krittika D’Silva, Frank Soboczenski, Graham Mackintosh, N. Chia, John Kalantari\",\"doi\":\"10.1109/LifeTech52111.2021.9391819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce CRISP, a Causal Research and Inference Search Platform. It is designed to assist biological and medical research by applying a variety of causal discovery methods to heterogeneous and high-dimensional observational data. CRISP aims to identify a small set of input variables which are most likely to have a causal effect on a target variable. The output of CRISP, thus, highlights the most promising candidates for further targeted research. We illustrate the utility of CRISP with a case study in oncology, using a multi-omic colorectal cancer data set to identify causal drivers differentiating two subtypes of colorectal cancer.\",\"PeriodicalId\":274908,\"journal\":{\"name\":\"2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LifeTech52111.2021.9391819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LifeTech52111.2021.9391819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们介绍CRISP,一个因果研究和推理搜索平台。它旨在通过应用各种因果发现方法对异构和高维观测数据来协助生物和医学研究。CRISP旨在识别最可能对目标变量产生因果影响的一小组输入变量。因此,CRISP的结果突出了最有希望进行进一步有针对性研究的候选者。我们通过一个肿瘤学案例研究来说明CRISP的实用性,使用多组学结直肠癌数据集来确定区分两种结直肠癌亚型的因果驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototyping CRISP: A Causal Relation and Inference Search Platform applied to Colorectal Cancer Data
We introduce CRISP, a Causal Research and Inference Search Platform. It is designed to assist biological and medical research by applying a variety of causal discovery methods to heterogeneous and high-dimensional observational data. CRISP aims to identify a small set of input variables which are most likely to have a causal effect on a target variable. The output of CRISP, thus, highlights the most promising candidates for further targeted research. We illustrate the utility of CRISP with a case study in oncology, using a multi-omic colorectal cancer data set to identify causal drivers differentiating two subtypes of colorectal cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信