{"title":"如何编程与公式在枫叶","authors":"M. Monagan","doi":"10.5206/mt.v3i1.15169","DOIUrl":null,"url":null,"abstract":"Maple's main strength is its ability to compute with mathematical formulasand not just with numbers. It can multiply and factor, differentiate and integrate, and simplify formulas. In this article, using differentiation as an example, I explain how to program with formulas in Maple. The key is the data representation that Maple uses for a formula and the operations Maple provides for operating on formulas. I will also discuss Automatic Differentiation as an alternative which differentiates programs.","PeriodicalId":355724,"journal":{"name":"Maple Transactions","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to program with formulas in Maple\",\"authors\":\"M. Monagan\",\"doi\":\"10.5206/mt.v3i1.15169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maple's main strength is its ability to compute with mathematical formulasand not just with numbers. It can multiply and factor, differentiate and integrate, and simplify formulas. In this article, using differentiation as an example, I explain how to program with formulas in Maple. The key is the data representation that Maple uses for a formula and the operations Maple provides for operating on formulas. I will also discuss Automatic Differentiation as an alternative which differentiates programs.\",\"PeriodicalId\":355724,\"journal\":{\"name\":\"Maple Transactions\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maple Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mt.v3i1.15169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maple Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mt.v3i1.15169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maple's main strength is its ability to compute with mathematical formulasand not just with numbers. It can multiply and factor, differentiate and integrate, and simplify formulas. In this article, using differentiation as an example, I explain how to program with formulas in Maple. The key is the data representation that Maple uses for a formula and the operations Maple provides for operating on formulas. I will also discuss Automatic Differentiation as an alternative which differentiates programs.