{"title":"对称多项式","authors":"Manuel Eberl","doi":"10.1002/9781118033081.ch2","DOIUrl":null,"url":null,"abstract":"Let’s call the roots p, q and r. Then (x− p)(x− q)(x− r) = x + ax + bx + c so that p + q + r = −a pq + qr + rp = b pqr = −c Now the cubic we want is (x− p)(x− q)(x− r) = x − (p + q + r)x + (pq + qr + rp)x− pqr so our task is to express the symmetric polynomials p + q + r, pq + qr + rp and pqr in terms of the elementary symmetric polynomials s1 = p + q + r, s2 = pq + qr + rp and s3 = pqr. Of course, p qr = (pqr) = (−c) = −c, but how about the other two?","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric Polynomials\",\"authors\":\"Manuel Eberl\",\"doi\":\"10.1002/9781118033081.ch2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let’s call the roots p, q and r. Then (x− p)(x− q)(x− r) = x + ax + bx + c so that p + q + r = −a pq + qr + rp = b pqr = −c Now the cubic we want is (x− p)(x− q)(x− r) = x − (p + q + r)x + (pq + qr + rp)x− pqr so our task is to express the symmetric polynomials p + q + r, pq + qr + rp and pqr in terms of the elementary symmetric polynomials s1 = p + q + r, s2 = pq + qr + rp and s3 = pqr. Of course, p qr = (pqr) = (−c) = −c, but how about the other two?\",\"PeriodicalId\":280633,\"journal\":{\"name\":\"Arch. Formal Proofs\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arch. Formal Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781118033081.ch2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781118033081.ch2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们叫根p, q和r。然后(x−p) (x−q) (x−r) = x + ax + bx + c p + q + r =−pq + qr + rp = b pqr =−c现在我们想要的立方(x−p) (x−q) x (x−r) =−(p + q + r) + (pq + qr + rp) x−pqr所以我们的任务是表达对称多项式p + q + r, pq + qr + rp和pqr初等对称多项式的s1 = p + q + r, s2 = pq + qr + rp和s3 = pqr。当然,pqr = (pqr) = (- c) = - c,但是另外两个呢?
Let’s call the roots p, q and r. Then (x− p)(x− q)(x− r) = x + ax + bx + c so that p + q + r = −a pq + qr + rp = b pqr = −c Now the cubic we want is (x− p)(x− q)(x− r) = x − (p + q + r)x + (pq + qr + rp)x− pqr so our task is to express the symmetric polynomials p + q + r, pq + qr + rp and pqr in terms of the elementary symmetric polynomials s1 = p + q + r, s2 = pq + qr + rp and s3 = pqr. Of course, p qr = (pqr) = (−c) = −c, but how about the other two?