基于CUDA的蛇形加密算法实现

Anas Mohd Nazlee, F. Hussin, N. Ali
{"title":"基于CUDA的蛇形加密算法实现","authors":"Anas Mohd Nazlee, F. Hussin, N. Ali","doi":"10.1109/SCORED.2009.5443190","DOIUrl":null,"url":null,"abstract":"CUDA is a platform developed by Nvidia for general purpose computing on Graphic Processing Unit to utilize the parallelism capabilities. Serpent encryption is considered to have high security margin as its advantage; however it lacks in speed as its disadvantage. We present a methodology for the transformation of CPU-based implementation of Serpent encryption algorithm (in C language) on CUDA to take advantage of CUDA's parallel processing capability. The proposed methodology could be used to quickly port a CPU-based algorithm for a quick gain in performance. Further tweaking, as described in this paper through the use of a profiler, would further increase the performance gain. Result based on the integration of multiple block encryption in parallel shows throughput performance of up to 100 MB/s or more than 7X performance gain.","PeriodicalId":443287,"journal":{"name":"2009 IEEE Student Conference on Research and Development (SCOReD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Serpent encryption algorithm implementation on Compute Unified Device Architecture (CUDA)\",\"authors\":\"Anas Mohd Nazlee, F. Hussin, N. Ali\",\"doi\":\"10.1109/SCORED.2009.5443190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CUDA is a platform developed by Nvidia for general purpose computing on Graphic Processing Unit to utilize the parallelism capabilities. Serpent encryption is considered to have high security margin as its advantage; however it lacks in speed as its disadvantage. We present a methodology for the transformation of CPU-based implementation of Serpent encryption algorithm (in C language) on CUDA to take advantage of CUDA's parallel processing capability. The proposed methodology could be used to quickly port a CPU-based algorithm for a quick gain in performance. Further tweaking, as described in this paper through the use of a profiler, would further increase the performance gain. Result based on the integration of multiple block encryption in parallel shows throughput performance of up to 100 MB/s or more than 7X performance gain.\",\"PeriodicalId\":443287,\"journal\":{\"name\":\"2009 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2009.5443190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2009.5443190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

CUDA是英伟达为图形处理单元开发的通用计算平台,以利用并行能力。蛇形加密被认为具有高安全裕度的优势;然而,它的缺点是速度不够快。我们提出了一种在CUDA上实现基于cpu的Serpent加密算法(C语言)的转换方法,以利用CUDA的并行处理能力。所提出的方法可用于快速移植基于cpu的算法,以快速获得性能。进一步的调整,如本文所述,通过使用分析器,将进一步提高性能增益。基于多个块加密并行集成的结果显示吞吐量性能高达100 MB/s或超过7倍的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Serpent encryption algorithm implementation on Compute Unified Device Architecture (CUDA)
CUDA is a platform developed by Nvidia for general purpose computing on Graphic Processing Unit to utilize the parallelism capabilities. Serpent encryption is considered to have high security margin as its advantage; however it lacks in speed as its disadvantage. We present a methodology for the transformation of CPU-based implementation of Serpent encryption algorithm (in C language) on CUDA to take advantage of CUDA's parallel processing capability. The proposed methodology could be used to quickly port a CPU-based algorithm for a quick gain in performance. Further tweaking, as described in this paper through the use of a profiler, would further increase the performance gain. Result based on the integration of multiple block encryption in parallel shows throughput performance of up to 100 MB/s or more than 7X performance gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信