关于$S_n$-模块的一个奇怪的变体Lie$_n$

S. Sundaram
{"title":"关于$S_n$-模块的一个奇怪的变体Lie$_n$","authors":"S. Sundaram","doi":"10.5802/alco.127","DOIUrl":null,"url":null,"abstract":"We introduce a variant of the much-studied $Lie$ representation of the symmetric group $S_n$, which we denote by $Lie_n^{(2)}.$ Our variant gives rise to a decomposition of the regular representation as a sum of {exterior} powers of modules $Lie_n^{(2)}.$ This is in contrast to the theorems of Poincare-Birkhoff-Witt and Thrall which decompose the regular representation into a sum of symmetrised $Lie$ modules. We show that nearly every known property of $Lie_n$ has a counterpart for the module $Lie_n^{(2)},$ suggesting connections to the cohomology of configuration spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words arising from Hochschild homology, due to Hanlon and Hersh.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a curious variant of the $S_n$-module Lie$_n$\",\"authors\":\"S. Sundaram\",\"doi\":\"10.5802/alco.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a variant of the much-studied $Lie$ representation of the symmetric group $S_n$, which we denote by $Lie_n^{(2)}.$ Our variant gives rise to a decomposition of the regular representation as a sum of {exterior} powers of modules $Lie_n^{(2)}.$ This is in contrast to the theorems of Poincare-Birkhoff-Witt and Thrall which decompose the regular representation into a sum of symmetrised $Lie$ modules. We show that nearly every known property of $Lie_n$ has a counterpart for the module $Lie_n^{(2)},$ suggesting connections to the cohomology of configuration spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words arising from Hochschild homology, due to Hanlon and Hersh.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了一个被广泛研究的对称群$S_n$的$Lie$表示的变体,我们用$Lie_n^{(2)}表示。我们的变体将正则表达式分解为模块$Lie_n^{(2)}的{外部}次幂和。这与Poincare-Birkhoff-Witt和Thrall的定理相反,这些定理将正则表示分解为对称的Lie模块和。我们证明了$Lie_n$的几乎每一个已知性质$Lie_n$都有对应的模$Lie_n^{(2)} $,这表明$与构型空间的上同调通过Sundaram和Welker的字符公式,与Gerstenhaber和Schack的欧拉幂等,以及由Hanlon和Hersh引起的由Hochschild同调引起的单射词复调的Hodge分解有联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a curious variant of the $S_n$-module Lie$_n$
We introduce a variant of the much-studied $Lie$ representation of the symmetric group $S_n$, which we denote by $Lie_n^{(2)}.$ Our variant gives rise to a decomposition of the regular representation as a sum of {exterior} powers of modules $Lie_n^{(2)}.$ This is in contrast to the theorems of Poincare-Birkhoff-Witt and Thrall which decompose the regular representation into a sum of symmetrised $Lie$ modules. We show that nearly every known property of $Lie_n$ has a counterpart for the module $Lie_n^{(2)},$ suggesting connections to the cohomology of configuration spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words arising from Hochschild homology, due to Hanlon and Hersh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信