利用社交媒体图像数据挖掘对象-能量相关性的深度学习模型

Matthew L. Dering, Chonghan Lee, K. Hopkinson, Conrad S. Tucker
{"title":"利用社交媒体图像数据挖掘对象-能量相关性的深度学习模型","authors":"Matthew L. Dering, Chonghan Lee, K. Hopkinson, Conrad S. Tucker","doi":"10.1115/DETC2018-85417","DOIUrl":null,"url":null,"abstract":"The authors of this work present a method that mines big media data streams from large Social Media Networks in order to discover novel correlations between objects appearing in images and electricity utilization patterns. The hypothesis of this work is that there exist correlations between what users take pictures of, and electricity utilization patterns. This work employs a Convolutional Neural Network to detect objects in 578,232 images gathered from over 15,000,000 tweets sent in the San Diego area. These objects were considered in the context of concurrent power use, on a monthly and hourly basis. The results reveal both positive and negative correlations between power use and specific objects, such as lamps (.053 hourly), dogs (−.011 hourly), horses (.422 monthly) and motorcycles (−.415, monthly).","PeriodicalId":338721,"journal":{"name":"Volume 1B: 38th Computers and Information in Engineering Conference","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Model for Mining Object-Energy Correlations Using Social Media Image Data\",\"authors\":\"Matthew L. Dering, Chonghan Lee, K. Hopkinson, Conrad S. Tucker\",\"doi\":\"10.1115/DETC2018-85417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors of this work present a method that mines big media data streams from large Social Media Networks in order to discover novel correlations between objects appearing in images and electricity utilization patterns. The hypothesis of this work is that there exist correlations between what users take pictures of, and electricity utilization patterns. This work employs a Convolutional Neural Network to detect objects in 578,232 images gathered from over 15,000,000 tweets sent in the San Diego area. These objects were considered in the context of concurrent power use, on a monthly and hourly basis. The results reveal both positive and negative correlations between power use and specific objects, such as lamps (.053 hourly), dogs (−.011 hourly), horses (.422 monthly) and motorcycles (−.415, monthly).\",\"PeriodicalId\":338721,\"journal\":{\"name\":\"Volume 1B: 38th Computers and Information in Engineering Conference\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1B: 38th Computers and Information in Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1B: 38th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的作者提出了一种方法,从大型社交媒体网络中挖掘大媒体数据流,以发现图像中出现的物体与电力使用模式之间的新相关性。这项工作的假设是,用户拍摄的照片和用电模式之间存在相关性。这项工作使用卷积神经网络来检测从圣地亚哥地区发送的超过1500万条推文中收集的578,232张图像中的物体。这些对象是在每月和每小时同时使用电力的情况下考虑的。研究结果显示,电力使用与特定物品(如灯具)之间既有正相关,也有负相关。053小时),狗(−。11小时),马(小时)。422个月)和摩托车(−。415年,每月)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Model for Mining Object-Energy Correlations Using Social Media Image Data
The authors of this work present a method that mines big media data streams from large Social Media Networks in order to discover novel correlations between objects appearing in images and electricity utilization patterns. The hypothesis of this work is that there exist correlations between what users take pictures of, and electricity utilization patterns. This work employs a Convolutional Neural Network to detect objects in 578,232 images gathered from over 15,000,000 tweets sent in the San Diego area. These objects were considered in the context of concurrent power use, on a monthly and hourly basis. The results reveal both positive and negative correlations between power use and specific objects, such as lamps (.053 hourly), dogs (−.011 hourly), horses (.422 monthly) and motorcycles (−.415, monthly).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信