{"title":"解释推特上的情绪波动","authors":"Anastasia Giahanou, I. Mele, F. Crestani","doi":"10.1145/2983323.2983678","DOIUrl":null,"url":null,"abstract":"Tracking public opinion in social media provides important information to enterprises or governments during a decision making process. In addition, identifying and extracting the causes of sentiment spikes allows interested parties to redesign and adjust strategies with the aim to attract more positive sentiments. In this paper, we focus on the problem of tracking sentiment towards different entities, detecting sentiment spikes and on the problem of extracting and ranking the causes of a sentiment spike. Our approach combines LDA topic model with Relative Entropy. The former is used for extracting the topics discussed in the time window before the sentiment spike. The latter allows to rank the detected topics based on their contribution to the sentiment spike.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Explaining Sentiment Spikes in Twitter\",\"authors\":\"Anastasia Giahanou, I. Mele, F. Crestani\",\"doi\":\"10.1145/2983323.2983678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking public opinion in social media provides important information to enterprises or governments during a decision making process. In addition, identifying and extracting the causes of sentiment spikes allows interested parties to redesign and adjust strategies with the aim to attract more positive sentiments. In this paper, we focus on the problem of tracking sentiment towards different entities, detecting sentiment spikes and on the problem of extracting and ranking the causes of a sentiment spike. Our approach combines LDA topic model with Relative Entropy. The former is used for extracting the topics discussed in the time window before the sentiment spike. The latter allows to rank the detected topics based on their contribution to the sentiment spike.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracking public opinion in social media provides important information to enterprises or governments during a decision making process. In addition, identifying and extracting the causes of sentiment spikes allows interested parties to redesign and adjust strategies with the aim to attract more positive sentiments. In this paper, we focus on the problem of tracking sentiment towards different entities, detecting sentiment spikes and on the problem of extracting and ranking the causes of a sentiment spike. Our approach combines LDA topic model with Relative Entropy. The former is used for extracting the topics discussed in the time window before the sentiment spike. The latter allows to rank the detected topics based on their contribution to the sentiment spike.