解释推特上的情绪波动

Anastasia Giahanou, I. Mele, F. Crestani
{"title":"解释推特上的情绪波动","authors":"Anastasia Giahanou, I. Mele, F. Crestani","doi":"10.1145/2983323.2983678","DOIUrl":null,"url":null,"abstract":"Tracking public opinion in social media provides important information to enterprises or governments during a decision making process. In addition, identifying and extracting the causes of sentiment spikes allows interested parties to redesign and adjust strategies with the aim to attract more positive sentiments. In this paper, we focus on the problem of tracking sentiment towards different entities, detecting sentiment spikes and on the problem of extracting and ranking the causes of a sentiment spike. Our approach combines LDA topic model with Relative Entropy. The former is used for extracting the topics discussed in the time window before the sentiment spike. The latter allows to rank the detected topics based on their contribution to the sentiment spike.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Explaining Sentiment Spikes in Twitter\",\"authors\":\"Anastasia Giahanou, I. Mele, F. Crestani\",\"doi\":\"10.1145/2983323.2983678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking public opinion in social media provides important information to enterprises or governments during a decision making process. In addition, identifying and extracting the causes of sentiment spikes allows interested parties to redesign and adjust strategies with the aim to attract more positive sentiments. In this paper, we focus on the problem of tracking sentiment towards different entities, detecting sentiment spikes and on the problem of extracting and ranking the causes of a sentiment spike. Our approach combines LDA topic model with Relative Entropy. The former is used for extracting the topics discussed in the time window before the sentiment spike. The latter allows to rank the detected topics based on their contribution to the sentiment spike.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在社会媒体上跟踪民意为企业或政府在决策过程中提供了重要信息。此外,识别和提取情绪峰值的原因允许相关方重新设计和调整策略,以吸引更多的积极情绪。在本文中,我们专注于跟踪对不同实体的情绪,检测情绪峰值以及提取和排序情绪峰值原因的问题。我们的方法将LDA主题模型与相对熵相结合。前者用于提取情绪峰值前的时间窗口内讨论的话题。后者允许根据对情绪峰值的贡献对检测到的主题进行排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining Sentiment Spikes in Twitter
Tracking public opinion in social media provides important information to enterprises or governments during a decision making process. In addition, identifying and extracting the causes of sentiment spikes allows interested parties to redesign and adjust strategies with the aim to attract more positive sentiments. In this paper, we focus on the problem of tracking sentiment towards different entities, detecting sentiment spikes and on the problem of extracting and ranking the causes of a sentiment spike. Our approach combines LDA topic model with Relative Entropy. The former is used for extracting the topics discussed in the time window before the sentiment spike. The latter allows to rank the detected topics based on their contribution to the sentiment spike.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信