跳跃扩散和随机利率下的欧式期权

S. Subramaniam
{"title":"跳跃扩散和随机利率下的欧式期权","authors":"S. Subramaniam","doi":"10.2139/ssrn.2072614","DOIUrl":null,"url":null,"abstract":"A one-dimensional partial differential-difference equation (pdde) under forward measure is developed to value European option under jump-diffusion, stochastic interest rate and local volatility. The corresponding forward Kolmogorov partial differential-difference equation for transition probability density is a also developed to value the options for various strikes at a given maturity time.The mathematical formulation of those equations is verified numerically by comparing their finite difference computation results with those of the Monte Carlo simulations. For the Kolmogorov equation, an alternate numerical method called the redistribution method is also developed. The redistribution method is based on the moments of the transition probability density and avoids some of the difficulties of a finite difference method.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"European Option Under Jump-Diffusion and Stochastic Interest Rate\",\"authors\":\"S. Subramaniam\",\"doi\":\"10.2139/ssrn.2072614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A one-dimensional partial differential-difference equation (pdde) under forward measure is developed to value European option under jump-diffusion, stochastic interest rate and local volatility. The corresponding forward Kolmogorov partial differential-difference equation for transition probability density is a also developed to value the options for various strikes at a given maturity time.The mathematical formulation of those equations is verified numerically by comparing their finite difference computation results with those of the Monte Carlo simulations. For the Kolmogorov equation, an alternate numerical method called the redistribution method is also developed. The redistribution method is based on the moments of the transition probability density and avoids some of the difficulties of a finite difference method.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2072614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2072614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在跳跃扩散、随机利率和局部波动率条件下,建立了一种正向测度下的一维偏微分差分方程(pdde)。还建立了相应的过渡概率密度的前向Kolmogorov偏微分-差分方程,用于在给定的成熟时间对各种打击的选择进行估值。通过将有限差分计算结果与蒙特卡罗模拟结果进行比较,对这些方程的数学公式进行了数值验证。对于Kolmogorov方程,还发展了另一种称为再分配法的数值方法。该方法基于转移概率密度的矩量,避免了有限差分法的一些困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
European Option Under Jump-Diffusion and Stochastic Interest Rate
A one-dimensional partial differential-difference equation (pdde) under forward measure is developed to value European option under jump-diffusion, stochastic interest rate and local volatility. The corresponding forward Kolmogorov partial differential-difference equation for transition probability density is a also developed to value the options for various strikes at a given maturity time.The mathematical formulation of those equations is verified numerically by comparing their finite difference computation results with those of the Monte Carlo simulations. For the Kolmogorov equation, an alternate numerical method called the redistribution method is also developed. The redistribution method is based on the moments of the transition probability density and avoids some of the difficulties of a finite difference method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信