{"title":"光学直条纹图像的间距检测算法比较","authors":"Yuexin Wang, F. bai, Xiao-juan Gao, Ying Wang","doi":"10.1117/12.2512071","DOIUrl":null,"url":null,"abstract":"Optical fringe is one of important output information from the optical systems. Some important optical or system parameters can be obtained by analyzing the fringe information from optical system such as interferometer system or diffraction setup. The straight fringe is a kind of optical fringes frequently appearing in Young’s double slit interference and single-slit diffraction and other optical structures. For the information extraction of straight fringes, it is often necessary to calculate the fringe spacing parameters. Popular straight fringes analysis methods include the fringe center method and the Fourier transform method. In addition, some image processing methods realized line detection can also be used to analyze this straight fringes image, which include Hough transform and Radon transform. In this paper, four algorithms for fringe analysis are discussed and compared, which focus on method’s principle, algorithm’s simulation and performance when they be applied to detect the fringes spacing. At the same time, the anti-noise performance of two image processing algorithms including Hough transform and Radon transform are analyzed.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of spacing detection algorithms for optical straight fringes images\",\"authors\":\"Yuexin Wang, F. bai, Xiao-juan Gao, Ying Wang\",\"doi\":\"10.1117/12.2512071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical fringe is one of important output information from the optical systems. Some important optical or system parameters can be obtained by analyzing the fringe information from optical system such as interferometer system or diffraction setup. The straight fringe is a kind of optical fringes frequently appearing in Young’s double slit interference and single-slit diffraction and other optical structures. For the information extraction of straight fringes, it is often necessary to calculate the fringe spacing parameters. Popular straight fringes analysis methods include the fringe center method and the Fourier transform method. In addition, some image processing methods realized line detection can also be used to analyze this straight fringes image, which include Hough transform and Radon transform. In this paper, four algorithms for fringe analysis are discussed and compared, which focus on method’s principle, algorithm’s simulation and performance when they be applied to detect the fringes spacing. At the same time, the anti-noise performance of two image processing algorithms including Hough transform and Radon transform are analyzed.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2512071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2512071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of spacing detection algorithms for optical straight fringes images
Optical fringe is one of important output information from the optical systems. Some important optical or system parameters can be obtained by analyzing the fringe information from optical system such as interferometer system or diffraction setup. The straight fringe is a kind of optical fringes frequently appearing in Young’s double slit interference and single-slit diffraction and other optical structures. For the information extraction of straight fringes, it is often necessary to calculate the fringe spacing parameters. Popular straight fringes analysis methods include the fringe center method and the Fourier transform method. In addition, some image processing methods realized line detection can also be used to analyze this straight fringes image, which include Hough transform and Radon transform. In this paper, four algorithms for fringe analysis are discussed and compared, which focus on method’s principle, algorithm’s simulation and performance when they be applied to detect the fringes spacing. At the same time, the anti-noise performance of two image processing algorithms including Hough transform and Radon transform are analyzed.