最优投资组合管理中的自组织特征映射SOFM和混合神经遗传SOFM

N. Loukeris, George Chalamandaris, I. Eleftheriadis
{"title":"最优投资组合管理中的自组织特征映射SOFM和混合神经遗传SOFM","authors":"N. Loukeris, George Chalamandaris, I. Eleftheriadis","doi":"10.1109/CSCI49370.2019.00057","DOIUrl":null,"url":null,"abstract":"We investigate the optimal performance of Self Organized Feature Maps in 60 different models of plain and hybrid form to define the optimal classifier. We also apply it on a novel model of optimal portfolio selection in hedging aspects.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self Organized Features Maps SOFM and Hybrid Neuro-Genetic SOFMs in Optimal Portfolio Management\",\"authors\":\"N. Loukeris, George Chalamandaris, I. Eleftheriadis\",\"doi\":\"10.1109/CSCI49370.2019.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the optimal performance of Self Organized Feature Maps in 60 different models of plain and hybrid form to define the optimal classifier. We also apply it on a novel model of optimal portfolio selection in hedging aspects.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了自组织特征映射在60种不同的普通和混合形式模型中的最优性能,以定义最优分类器。并将其应用于对冲方面的一个新的最优投资组合选择模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self Organized Features Maps SOFM and Hybrid Neuro-Genetic SOFMs in Optimal Portfolio Management
We investigate the optimal performance of Self Organized Feature Maps in 60 different models of plain and hybrid form to define the optimal classifier. We also apply it on a novel model of optimal portfolio selection in hedging aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信