N. Loukeris, George Chalamandaris, I. Eleftheriadis
{"title":"最优投资组合管理中的自组织特征映射SOFM和混合神经遗传SOFM","authors":"N. Loukeris, George Chalamandaris, I. Eleftheriadis","doi":"10.1109/CSCI49370.2019.00057","DOIUrl":null,"url":null,"abstract":"We investigate the optimal performance of Self Organized Feature Maps in 60 different models of plain and hybrid form to define the optimal classifier. We also apply it on a novel model of optimal portfolio selection in hedging aspects.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self Organized Features Maps SOFM and Hybrid Neuro-Genetic SOFMs in Optimal Portfolio Management\",\"authors\":\"N. Loukeris, George Chalamandaris, I. Eleftheriadis\",\"doi\":\"10.1109/CSCI49370.2019.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the optimal performance of Self Organized Feature Maps in 60 different models of plain and hybrid form to define the optimal classifier. We also apply it on a novel model of optimal portfolio selection in hedging aspects.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self Organized Features Maps SOFM and Hybrid Neuro-Genetic SOFMs in Optimal Portfolio Management
We investigate the optimal performance of Self Organized Feature Maps in 60 different models of plain and hybrid form to define the optimal classifier. We also apply it on a novel model of optimal portfolio selection in hedging aspects.