基于多层感知器神经网络元学习器的集成叠加旅客列车延误预测

Veronica A. Boateng, Bo Yang
{"title":"基于多层感知器神经网络元学习器的集成叠加旅客列车延误预测","authors":"Veronica A. Boateng, Bo Yang","doi":"10.1109/cai54212.2023.00017","DOIUrl":null,"url":null,"abstract":"Accurately predicting delays is crucial for improving passenger service quality and railway traffic management. The import of artificial neural networks into train delay prediction helps to improve prediction accuracy. In this paper, we propose a novel stacking ensemble regression model (ST-NN) that uses MultiLayer Perceptron’s (MLP) neural networks as single learners and MLP as the meta-learner, which enhances the accuracy of Passenger Train arrival delay prediction time in minutes. We evaluated the model performance using Amtrak data to compare with other combinations of stacking ensembles and single learners including, Decision Trees (DT), Random Forest (RF), Gradient Boosting Machines (GBM), XGBoost (XGB), LightGBM (LGBM), regression algorithms, Artificial Neural Network (ANN), and MLP to determine enhanced model accuracy of our model. The experiments demonstrate that our ST-NN regression model significantly improves model evaluation indicators by producing a 63.4-82.37% decrease in Mean Absolute Error. Furthermore, the accuracy outperforms the best benchmark models regarding train delay prediction.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble Stacking with the Multi-Layer Perceptron Neural Network Meta-Learner for Passenger Train Delay Prediction\",\"authors\":\"Veronica A. Boateng, Bo Yang\",\"doi\":\"10.1109/cai54212.2023.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting delays is crucial for improving passenger service quality and railway traffic management. The import of artificial neural networks into train delay prediction helps to improve prediction accuracy. In this paper, we propose a novel stacking ensemble regression model (ST-NN) that uses MultiLayer Perceptron’s (MLP) neural networks as single learners and MLP as the meta-learner, which enhances the accuracy of Passenger Train arrival delay prediction time in minutes. We evaluated the model performance using Amtrak data to compare with other combinations of stacking ensembles and single learners including, Decision Trees (DT), Random Forest (RF), Gradient Boosting Machines (GBM), XGBoost (XGB), LightGBM (LGBM), regression algorithms, Artificial Neural Network (ANN), and MLP to determine enhanced model accuracy of our model. The experiments demonstrate that our ST-NN regression model significantly improves model evaluation indicators by producing a 63.4-82.37% decrease in Mean Absolute Error. Furthermore, the accuracy outperforms the best benchmark models regarding train delay prediction.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cai54212.2023.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai54212.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测延误对提高客运服务质量和铁路交通管理至关重要。将人工神经网络引入列车延误预测有助于提高预测精度。本文提出了一种新的多层感知器(MultiLayer Perceptron’s, MLP)神经网络作为单学习器,MLP作为元学习器的叠加集成回归模型(ST-NN),提高了旅客列车到达延误时间(分)预测的准确性。我们使用Amtrak数据评估了模型的性能,并将其与决策树(DT)、随机森林(RF)、梯度增强机(GBM)、XGBoost (XGB)、LightGBM (LGBM)、回归算法、人工神经网络(ANN)和MLP等其他堆叠集成和单一学习器的组合进行了比较,以确定我们模型的增强模型精度。实验表明,我们的ST-NN回归模型显著改善了模型评价指标,平均绝对误差(Mean Absolute Error)降低了63.4-82.37%。此外,在列车延误预测方面,其准确性优于最佳基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Stacking with the Multi-Layer Perceptron Neural Network Meta-Learner for Passenger Train Delay Prediction
Accurately predicting delays is crucial for improving passenger service quality and railway traffic management. The import of artificial neural networks into train delay prediction helps to improve prediction accuracy. In this paper, we propose a novel stacking ensemble regression model (ST-NN) that uses MultiLayer Perceptron’s (MLP) neural networks as single learners and MLP as the meta-learner, which enhances the accuracy of Passenger Train arrival delay prediction time in minutes. We evaluated the model performance using Amtrak data to compare with other combinations of stacking ensembles and single learners including, Decision Trees (DT), Random Forest (RF), Gradient Boosting Machines (GBM), XGBoost (XGB), LightGBM (LGBM), regression algorithms, Artificial Neural Network (ANN), and MLP to determine enhanced model accuracy of our model. The experiments demonstrate that our ST-NN regression model significantly improves model evaluation indicators by producing a 63.4-82.37% decrease in Mean Absolute Error. Furthermore, the accuracy outperforms the best benchmark models regarding train delay prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信