消除一阶逻辑中的定义和Skolem函数

J. Avigad
{"title":"消除一阶逻辑中的定义和Skolem函数","authors":"J. Avigad","doi":"10.1109/LICS.2001.932490","DOIUrl":null,"url":null,"abstract":"In any classical first-order theory that proves the existence of at least two elements, one can eliminate definitions with a polynomial bound on the increase in proof length. The author considers how in any classical first-order theory strong enough to code finite functions, including sequential theories, one can also eliminate Skolem functions with a polynomial bound on the increase in proof length.","PeriodicalId":366313,"journal":{"name":"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Eliminating definitions and Skolem functions in first-order logic\",\"authors\":\"J. Avigad\",\"doi\":\"10.1109/LICS.2001.932490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In any classical first-order theory that proves the existence of at least two elements, one can eliminate definitions with a polynomial bound on the increase in proof length. The author considers how in any classical first-order theory strong enough to code finite functions, including sequential theories, one can also eliminate Skolem functions with a polynomial bound on the increase in proof length.\",\"PeriodicalId\":366313,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2001.932490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2001.932490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在任何经典一阶理论中,只要证明了至少两个元素的存在,就可以消去具有证明长度增加的多项式界的定义。作者考虑如何在任何经典一阶理论中,包括序列理论在内的足够强的有限函数编码,也可以消去Skolem函数在证明长度增加上的多项式界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eliminating definitions and Skolem functions in first-order logic
In any classical first-order theory that proves the existence of at least two elements, one can eliminate definitions with a polynomial bound on the increase in proof length. The author considers how in any classical first-order theory strong enough to code finite functions, including sequential theories, one can also eliminate Skolem functions with a polynomial bound on the increase in proof length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信