{"title":"人类行为分类的时序时空兴趣点","authors":"Mengyuan Liu, Chen Chen, Hong Liu","doi":"10.1109/ICME.2017.8019477","DOIUrl":null,"url":null,"abstract":"Human action classification, which is vital for content-based video retrieval and human-machine interaction, finds problem in distinguishing similar actions. Previous works typically detect spatial-temporal interest points (STIPs) from action sequences and then adopt bag-of-visual words (BoVW) model to describe actions as numerical statistics of STIPs. Despite the robustness of BoVW, this model ignores the spatial-temporal layout of STIPs, leading to misclassification among different types of actions with similar numerical statistics of STIPs. Motivated by this, a time-ordered feature is designed to describe the temporal distribution of STIPs, which contains complementary structural information to traditional BoVW model. Moreover, a temporal refinement method is used to eliminate intra-variations among time-ordered features caused by performers' habits. Then a time-ordered BoVW model is built to represent actions, which encodes both numerical statistics and temporal distribution of STIPs. Extensive experiments on three challenging datasets, i.e., KTH, Rochster and UT-Interaction, validate the effectiveness of our method in distinguishing similar actions.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-ordered spatial-temporal interest points for human action classification\",\"authors\":\"Mengyuan Liu, Chen Chen, Hong Liu\",\"doi\":\"10.1109/ICME.2017.8019477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action classification, which is vital for content-based video retrieval and human-machine interaction, finds problem in distinguishing similar actions. Previous works typically detect spatial-temporal interest points (STIPs) from action sequences and then adopt bag-of-visual words (BoVW) model to describe actions as numerical statistics of STIPs. Despite the robustness of BoVW, this model ignores the spatial-temporal layout of STIPs, leading to misclassification among different types of actions with similar numerical statistics of STIPs. Motivated by this, a time-ordered feature is designed to describe the temporal distribution of STIPs, which contains complementary structural information to traditional BoVW model. Moreover, a temporal refinement method is used to eliminate intra-variations among time-ordered features caused by performers' habits. Then a time-ordered BoVW model is built to represent actions, which encodes both numerical statistics and temporal distribution of STIPs. Extensive experiments on three challenging datasets, i.e., KTH, Rochster and UT-Interaction, validate the effectiveness of our method in distinguishing similar actions.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-ordered spatial-temporal interest points for human action classification
Human action classification, which is vital for content-based video retrieval and human-machine interaction, finds problem in distinguishing similar actions. Previous works typically detect spatial-temporal interest points (STIPs) from action sequences and then adopt bag-of-visual words (BoVW) model to describe actions as numerical statistics of STIPs. Despite the robustness of BoVW, this model ignores the spatial-temporal layout of STIPs, leading to misclassification among different types of actions with similar numerical statistics of STIPs. Motivated by this, a time-ordered feature is designed to describe the temporal distribution of STIPs, which contains complementary structural information to traditional BoVW model. Moreover, a temporal refinement method is used to eliminate intra-variations among time-ordered features caused by performers' habits. Then a time-ordered BoVW model is built to represent actions, which encodes both numerical statistics and temporal distribution of STIPs. Extensive experiments on three challenging datasets, i.e., KTH, Rochster and UT-Interaction, validate the effectiveness of our method in distinguishing similar actions.