{"title":"应用主成分分析在有限记忆环境下推进植物病害数字表型分析","authors":"Enow Albert, N. Bille, N. Leonard","doi":"10.25081/jsa.2023.v7.8327","DOIUrl":null,"url":null,"abstract":"Despite its widespread employment as a highly efficient dimensionality reduction technique, limited research has been carried out on the advantage of Principal Component Analysis (PCA)–based compression/reconstruction of image data to machine learning-based image classification performance and storage space optimization. To address this limitation, we designed a study in which we compared the performances of two Convolutional Neural Network-Random Forest Algorithm (CNN-RF) guava leaf image classification models developed using training data from a number of original guava leaf images contained in a predefined amount of storage space (on the one hand), and a number of PCA compressed/reconstructed guava leaf images contained in the same amount of storage space (on the other hand), on the basis of four criteria – Accuracy, F1-Score, Phi Coefficient and the Fowlkes–Mallows index. Our approach achieved a 1:100 image compression ratio (99.00% image compression) which was comparatively much better than previous results achieved using other algorithms like arithmetic coding (1:1.50), wavelet transform (90.00% image compression), and a combination of three transform-based techniques – Discrete Fourier (DFT), Discrete Wavelet (DWT) and Discrete Cosine (DCT) (1:22.50). From a subjective visual quality perspective, the PCA compressed/reconstructed guava leaf images presented almost no loss of image detail. Finally, the CNN-RF model developed using PCA compressed/reconstructed guava leaf images outperformed the CNN-RF model developed using original guava leaf images by 0.10% accuracy increase, 0.10 F1-Score increase, 0.18 Phi Coefficient increase and 0.09 Fowlkes–Mallows increase.","PeriodicalId":130104,"journal":{"name":"Journal of Scientific Agriculture","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Principal Component Analysis to advancing digital phenotyping of plant disease in the context of limited memory for training data storage\",\"authors\":\"Enow Albert, N. Bille, N. Leonard\",\"doi\":\"10.25081/jsa.2023.v7.8327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite its widespread employment as a highly efficient dimensionality reduction technique, limited research has been carried out on the advantage of Principal Component Analysis (PCA)–based compression/reconstruction of image data to machine learning-based image classification performance and storage space optimization. To address this limitation, we designed a study in which we compared the performances of two Convolutional Neural Network-Random Forest Algorithm (CNN-RF) guava leaf image classification models developed using training data from a number of original guava leaf images contained in a predefined amount of storage space (on the one hand), and a number of PCA compressed/reconstructed guava leaf images contained in the same amount of storage space (on the other hand), on the basis of four criteria – Accuracy, F1-Score, Phi Coefficient and the Fowlkes–Mallows index. Our approach achieved a 1:100 image compression ratio (99.00% image compression) which was comparatively much better than previous results achieved using other algorithms like arithmetic coding (1:1.50), wavelet transform (90.00% image compression), and a combination of three transform-based techniques – Discrete Fourier (DFT), Discrete Wavelet (DWT) and Discrete Cosine (DCT) (1:22.50). From a subjective visual quality perspective, the PCA compressed/reconstructed guava leaf images presented almost no loss of image detail. Finally, the CNN-RF model developed using PCA compressed/reconstructed guava leaf images outperformed the CNN-RF model developed using original guava leaf images by 0.10% accuracy increase, 0.10 F1-Score increase, 0.18 Phi Coefficient increase and 0.09 Fowlkes–Mallows increase.\",\"PeriodicalId\":130104,\"journal\":{\"name\":\"Journal of Scientific Agriculture\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25081/jsa.2023.v7.8327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25081/jsa.2023.v7.8327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Principal Component Analysis to advancing digital phenotyping of plant disease in the context of limited memory for training data storage
Despite its widespread employment as a highly efficient dimensionality reduction technique, limited research has been carried out on the advantage of Principal Component Analysis (PCA)–based compression/reconstruction of image data to machine learning-based image classification performance and storage space optimization. To address this limitation, we designed a study in which we compared the performances of two Convolutional Neural Network-Random Forest Algorithm (CNN-RF) guava leaf image classification models developed using training data from a number of original guava leaf images contained in a predefined amount of storage space (on the one hand), and a number of PCA compressed/reconstructed guava leaf images contained in the same amount of storage space (on the other hand), on the basis of four criteria – Accuracy, F1-Score, Phi Coefficient and the Fowlkes–Mallows index. Our approach achieved a 1:100 image compression ratio (99.00% image compression) which was comparatively much better than previous results achieved using other algorithms like arithmetic coding (1:1.50), wavelet transform (90.00% image compression), and a combination of three transform-based techniques – Discrete Fourier (DFT), Discrete Wavelet (DWT) and Discrete Cosine (DCT) (1:22.50). From a subjective visual quality perspective, the PCA compressed/reconstructed guava leaf images presented almost no loss of image detail. Finally, the CNN-RF model developed using PCA compressed/reconstructed guava leaf images outperformed the CNN-RF model developed using original guava leaf images by 0.10% accuracy increase, 0.10 F1-Score increase, 0.18 Phi Coefficient increase and 0.09 Fowlkes–Mallows increase.