{"title":"基于功耗分析的硬件木马检测","authors":"H. Xue, Shuo Li, S. Ren","doi":"10.1109/NAECON.2017.8268780","DOIUrl":null,"url":null,"abstract":"Outsourcing of chip product chain makes hardware vulnerable to being attacked. For example, an attacker who has access to hardware fabrication process can alter the genuine hardware with the insertion of concealed hardware elements (Hardware Trojan). Therefore, microelectronic circuit Hardware Trojan detection becomes a key step of chip production. A power analysis-based power-analysis microelectronic circuit Hardware Trojan detection methodology is proposed in this paper. The detection method is implemented in 90nm CMOS process. Based on simulation results, our proposed technique can detect Hardware Trojans with areas that are 0.013% of the host-circuitry.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Power analysis-based Hardware Trojan detection\",\"authors\":\"H. Xue, Shuo Li, S. Ren\",\"doi\":\"10.1109/NAECON.2017.8268780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outsourcing of chip product chain makes hardware vulnerable to being attacked. For example, an attacker who has access to hardware fabrication process can alter the genuine hardware with the insertion of concealed hardware elements (Hardware Trojan). Therefore, microelectronic circuit Hardware Trojan detection becomes a key step of chip production. A power analysis-based power-analysis microelectronic circuit Hardware Trojan detection methodology is proposed in this paper. The detection method is implemented in 90nm CMOS process. Based on simulation results, our proposed technique can detect Hardware Trojans with areas that are 0.013% of the host-circuitry.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Outsourcing of chip product chain makes hardware vulnerable to being attacked. For example, an attacker who has access to hardware fabrication process can alter the genuine hardware with the insertion of concealed hardware elements (Hardware Trojan). Therefore, microelectronic circuit Hardware Trojan detection becomes a key step of chip production. A power analysis-based power-analysis microelectronic circuit Hardware Trojan detection methodology is proposed in this paper. The detection method is implemented in 90nm CMOS process. Based on simulation results, our proposed technique can detect Hardware Trojans with areas that are 0.013% of the host-circuitry.