命题多值逻辑中的经典根岑型方法

A. Avron
{"title":"命题多值逻辑中的经典根岑型方法","authors":"A. Avron","doi":"10.1109/ISMVL.2001.924586","DOIUrl":null,"url":null,"abstract":"A classical Gentzen-type system is one which employs two-sided sequents, together with structural and logical rules of a certain characteristic form. A decent Gentzen-type system should allow for direct proofs, which means that it should admit some useful forms of cut elimination and the subformula property. In this tutorial we explain the main difficulty in developing classical Gentzen-type systems with these properties for many-valued logics. We then illustrate with numerous examples the various possible ways of overcoming this difficulty. Our examples include practically all 3-valued logics, the most important class of 4-valued logics, as well as central infinite-valued logics (like Godel-Dummett logic, S5 and some substructural logics).","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Classical Gentzen-type methods in propositional many-valued logics\",\"authors\":\"A. Avron\",\"doi\":\"10.1109/ISMVL.2001.924586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical Gentzen-type system is one which employs two-sided sequents, together with structural and logical rules of a certain characteristic form. A decent Gentzen-type system should allow for direct proofs, which means that it should admit some useful forms of cut elimination and the subformula property. In this tutorial we explain the main difficulty in developing classical Gentzen-type systems with these properties for many-valued logics. We then illustrate with numerous examples the various possible ways of overcoming this difficulty. Our examples include practically all 3-valued logics, the most important class of 4-valued logics, as well as central infinite-valued logics (like Godel-Dummett logic, S5 and some substructural logics).\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

一个经典的根岑型系统是一个采用双面序列,并具有一定特征形式的结构和逻辑规则的系统。一个像样的根岑型系统应该允许直接证明,这意味着它应该承认一些有用的切消形式和子公式性质。在本教程中,我们将解释为多值逻辑开发具有这些属性的经典根岑型系统的主要困难。然后我们用许多例子来说明克服这个困难的各种可能的方法。我们的例子包括几乎所有的3值逻辑,最重要的一类4值逻辑,以及中心无限值逻辑(如哥德尔-达米特逻辑,S5和一些子结构逻辑)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical Gentzen-type methods in propositional many-valued logics
A classical Gentzen-type system is one which employs two-sided sequents, together with structural and logical rules of a certain characteristic form. A decent Gentzen-type system should allow for direct proofs, which means that it should admit some useful forms of cut elimination and the subformula property. In this tutorial we explain the main difficulty in developing classical Gentzen-type systems with these properties for many-valued logics. We then illustrate with numerous examples the various possible ways of overcoming this difficulty. Our examples include practically all 3-valued logics, the most important class of 4-valued logics, as well as central infinite-valued logics (like Godel-Dummett logic, S5 and some substructural logics).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信