基于s型函数的改进多重分形测度图像分析

M. Paskas, A. Gavrovska, M. Milivojević, B. Reljin
{"title":"基于s型函数的改进多重分形测度图像分析","authors":"M. Paskas, A. Gavrovska, M. Milivojević, B. Reljin","doi":"10.1109/NEUREL.2012.6420007","DOIUrl":null,"url":null,"abstract":"In this paper we propose the new multifractal measure inspired by sigmoid activation function usually used in neural networks. By using new measure the Hölder exponent and multifractal spectrum are determined in classical way. New measure is applied to image processing, especially in texture classification. It was shown that by changing the slope of the sigmoid function different details can be extracted from analyzed image. Initial results are promising and indicate to high potential of new measure in image processing.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image analysis using modified multifractal measure based on sigmoid function\",\"authors\":\"M. Paskas, A. Gavrovska, M. Milivojević, B. Reljin\",\"doi\":\"10.1109/NEUREL.2012.6420007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose the new multifractal measure inspired by sigmoid activation function usually used in neural networks. By using new measure the Hölder exponent and multifractal spectrum are determined in classical way. New measure is applied to image processing, especially in texture classification. It was shown that by changing the slope of the sigmoid function different details can be extracted from analyzed image. Initial results are promising and indicate to high potential of new measure in image processing.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6420007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6420007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文从神经网络中常用的s型激活函数的启发出发,提出了新的多重分形测度。采用新的测量方法,用经典方法确定了Hölder指数和多重分形谱。在图像处理中,特别是纹理分类中应用了新的度量方法。结果表明,通过改变s型函数的斜率,可以从分析图像中提取出不同的细节。初步结果表明,新方法在图像处理中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image analysis using modified multifractal measure based on sigmoid function
In this paper we propose the new multifractal measure inspired by sigmoid activation function usually used in neural networks. By using new measure the Hölder exponent and multifractal spectrum are determined in classical way. New measure is applied to image processing, especially in texture classification. It was shown that by changing the slope of the sigmoid function different details can be extracted from analyzed image. Initial results are promising and indicate to high potential of new measure in image processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信