一种有前景的非线性盲反卷积和去模糊方法

J. Le Caillec, R. Garello
{"title":"一种有前景的非线性盲反卷积和去模糊方法","authors":"J. Le Caillec, R. Garello","doi":"10.1109/TFSA.1996.550069","DOIUrl":null,"url":null,"abstract":"Blind deconvolution became an important field of interest for higher order moments application during the two last decades due to the capacity of these moments to reconstruct mixed phase systems. On the other hand, nonlinear systems detection and identification have been also studied with methods using polyspectra. We present in this paper a method to restore white or unskewed data sequences passing through a nonlinear system based on a set of mixed higher order moments equations.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A prospective way for nonlinear blind deconvolution and deblurring\",\"authors\":\"J. Le Caillec, R. Garello\",\"doi\":\"10.1109/TFSA.1996.550069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind deconvolution became an important field of interest for higher order moments application during the two last decades due to the capacity of these moments to reconstruct mixed phase systems. On the other hand, nonlinear systems detection and identification have been also studied with methods using polyspectra. We present in this paper a method to restore white or unskewed data sequences passing through a nonlinear system based on a set of mixed higher order moments equations.\",\"PeriodicalId\":415923,\"journal\":{\"name\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1996.550069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.550069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近二十年来,由于高阶矩具有重构混合相系统的能力,盲反褶积成为高阶矩应用的一个重要研究领域。另一方面,用多光谱方法对非线性系统的检测和识别也进行了研究。本文提出了一种基于混合高阶矩方程的白数据序列或非偏数据序列通过非线性系统后的恢复方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prospective way for nonlinear blind deconvolution and deblurring
Blind deconvolution became an important field of interest for higher order moments application during the two last decades due to the capacity of these moments to reconstruct mixed phase systems. On the other hand, nonlinear systems detection and identification have been also studied with methods using polyspectra. We present in this paper a method to restore white or unskewed data sequences passing through a nonlinear system based on a set of mixed higher order moments equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信