{"title":"最简单的只有三个平方的二进制词","authors":"D. Gabric, J. Shallit","doi":"10.1051/ITA/2021001","DOIUrl":null,"url":null,"abstract":"We re-examine previous constructions of infinite binary words containing few distinct squares with the goal of finding the “simplest”, in a certain sense. We exhibit several new constructions. Rather than using tedious case-based arguments to prove that the constructions have the desired property, we rely instead on theorem-proving software for their correctness.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Simplest Binary Word with Only Three Squares\",\"authors\":\"D. Gabric, J. Shallit\",\"doi\":\"10.1051/ITA/2021001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We re-examine previous constructions of infinite binary words containing few distinct squares with the goal of finding the “simplest”, in a certain sense. We exhibit several new constructions. Rather than using tedious case-based arguments to prove that the constructions have the desired property, we rely instead on theorem-proving software for their correctness.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ITA/2021001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITA/2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We re-examine previous constructions of infinite binary words containing few distinct squares with the goal of finding the “simplest”, in a certain sense. We exhibit several new constructions. Rather than using tedious case-based arguments to prove that the constructions have the desired property, we rely instead on theorem-proving software for their correctness.