空气基PVT系统与光伏系统太阳能利用效果的季节分析

Kanghyun Kim, Young-Dae Choi
{"title":"空气基PVT系统与光伏系统太阳能利用效果的季节分析","authors":"Kanghyun Kim, Young-Dae Choi","doi":"10.7836/kses.2022.42.4.069","DOIUrl":null,"url":null,"abstract":"Recently, the use of new and renewable energy for suppressing the generation of carbon dioxide to prevent global warming has attracted considerable attention. Among the various new and renewable energy sources, solar energy has been attracting increasing interest for the reduction of building energy, as it is easy to implement in buildings and excellent for maintenance and repair. Therefore, in this study, an air-based photovoltaic thermal (PVT) system, which can increase the utilization of solar energy, was compared with the existing PV system through measurements. The PVT system can increases the amount of power generated by reducing the temperature of the panel via the air passing through the lower part of the panel. Furthermore, useing the air whose temperature has been increased by the heat obtained from the panel for indoor heating or hot water supply in the building is possible. The performance of existing PV and PVT panels was measured under the same weather conditions, and result indicated that the power generation efficiency of PVT panels, through which the air passes was higher than that of PV panels. Furthermore, the air whose temperature was increased to ≥ 40°C by the PVT system may be utilized for heating and hot water supply. Overall, by utilizing solar power, air-based PVT systems can utilize 3.4 ~ 3.9 times more solar power than can conventional PVs.","PeriodicalId":276437,"journal":{"name":"Journal of the Korean Solar Energy Society","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal Analysis of Solar Energy Utilization Effect of Air-based PVT System by Comparing with Photovoltaic System\",\"authors\":\"Kanghyun Kim, Young-Dae Choi\",\"doi\":\"10.7836/kses.2022.42.4.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the use of new and renewable energy for suppressing the generation of carbon dioxide to prevent global warming has attracted considerable attention. Among the various new and renewable energy sources, solar energy has been attracting increasing interest for the reduction of building energy, as it is easy to implement in buildings and excellent for maintenance and repair. Therefore, in this study, an air-based photovoltaic thermal (PVT) system, which can increase the utilization of solar energy, was compared with the existing PV system through measurements. The PVT system can increases the amount of power generated by reducing the temperature of the panel via the air passing through the lower part of the panel. Furthermore, useing the air whose temperature has been increased by the heat obtained from the panel for indoor heating or hot water supply in the building is possible. The performance of existing PV and PVT panels was measured under the same weather conditions, and result indicated that the power generation efficiency of PVT panels, through which the air passes was higher than that of PV panels. Furthermore, the air whose temperature was increased to ≥ 40°C by the PVT system may be utilized for heating and hot water supply. Overall, by utilizing solar power, air-based PVT systems can utilize 3.4 ~ 3.9 times more solar power than can conventional PVs.\",\"PeriodicalId\":276437,\"journal\":{\"name\":\"Journal of the Korean Solar Energy Society\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Solar Energy Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7836/kses.2022.42.4.069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Solar Energy Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7836/kses.2022.42.4.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,利用新能源和可再生能源抑制二氧化碳的产生以防止全球变暖引起了相当大的关注。在各种新能源和可再生能源中,太阳能因其易于在建筑物中实施,并且具有良好的维护和维修性能而受到越来越多的关注。因此,在本研究中,通过测量,将一种可以提高太阳能利用率的空气基光伏热(PVT)系统与现有的光伏系统进行了比较。PVT系统可以通过通过面板下部的空气来降低面板的温度,从而增加产生的电量。此外,可以使用从面板获得的热量提高温度的空气用于室内供暖或建筑物内的热水供应。在相同的天气条件下,对现有PV板和PVT板的性能进行了测试,结果表明,空气通过的PVT板的发电效率高于PV板。此外,通过PVT系统将温度提高到≥40°C的空气可用于供暖和热水供应。总的来说,通过利用太阳能,空基PVT系统可以利用比传统pv多3.4 ~ 3.9倍的太阳能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal Analysis of Solar Energy Utilization Effect of Air-based PVT System by Comparing with Photovoltaic System
Recently, the use of new and renewable energy for suppressing the generation of carbon dioxide to prevent global warming has attracted considerable attention. Among the various new and renewable energy sources, solar energy has been attracting increasing interest for the reduction of building energy, as it is easy to implement in buildings and excellent for maintenance and repair. Therefore, in this study, an air-based photovoltaic thermal (PVT) system, which can increase the utilization of solar energy, was compared with the existing PV system through measurements. The PVT system can increases the amount of power generated by reducing the temperature of the panel via the air passing through the lower part of the panel. Furthermore, useing the air whose temperature has been increased by the heat obtained from the panel for indoor heating or hot water supply in the building is possible. The performance of existing PV and PVT panels was measured under the same weather conditions, and result indicated that the power generation efficiency of PVT panels, through which the air passes was higher than that of PV panels. Furthermore, the air whose temperature was increased to ≥ 40°C by the PVT system may be utilized for heating and hot water supply. Overall, by utilizing solar power, air-based PVT systems can utilize 3.4 ~ 3.9 times more solar power than can conventional PVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信