基于演化结构RBF神经网络的七连杆冗余机械臂控制

T. Nanayakkara, K. Watanabe, K. Kiguchi, K. Izumi
{"title":"基于演化结构RBF神经网络的七连杆冗余机械臂控制","authors":"T. Nanayakkara, K. Watanabe, K. Kiguchi, K. Izumi","doi":"10.1109/SICE.2000.889670","DOIUrl":null,"url":null,"abstract":"A method for the identification of complex nonlinear dynamics of a multilink robot manipulator using Runge-Kutta-Gill neural networks (RKGNN) in the absence of input torque information is proposed. The RKGNN constructed using shape adaptive radial basis functions (RBF) are trained using an evolutionary algorithm. Due to the fact that the main function network is divided into subnetworks to represent detailed properties of the dynamics of a manipulator, the neural networks have greater information processing capacity and they can be tested for properties such as positive definiteness of the inertia matrix. Dynamics of an industrial seven-link manipulator are identified using only input-output position and their velocity data. Promising experimental control results are obtained to prove the ability of the proposed method in capturing highly nonlinear dynamics of a multilink manipulator in an effective manner.","PeriodicalId":254956,"journal":{"name":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary structured RBF neural network based control of a seven-link redundant manipulator\",\"authors\":\"T. Nanayakkara, K. Watanabe, K. Kiguchi, K. Izumi\",\"doi\":\"10.1109/SICE.2000.889670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for the identification of complex nonlinear dynamics of a multilink robot manipulator using Runge-Kutta-Gill neural networks (RKGNN) in the absence of input torque information is proposed. The RKGNN constructed using shape adaptive radial basis functions (RBF) are trained using an evolutionary algorithm. Due to the fact that the main function network is divided into subnetworks to represent detailed properties of the dynamics of a manipulator, the neural networks have greater information processing capacity and they can be tested for properties such as positive definiteness of the inertia matrix. Dynamics of an industrial seven-link manipulator are identified using only input-output position and their velocity data. Promising experimental control results are obtained to prove the ability of the proposed method in capturing highly nonlinear dynamics of a multilink manipulator in an effective manner.\",\"PeriodicalId\":254956,\"journal\":{\"name\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2000.889670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2000.889670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于Runge-Kutta-Gill神经网络(RKGNN)的多连杆机器人复杂非线性动力学辨识方法。基于形状自适应径向基函数(RBF)构造的RKGNN采用进化算法进行训练。由于将主函数网络划分为子网络来表示机械臂动力学的详细特性,因此神经网络具有更大的信息处理能力,并且可以测试其惯量矩阵的正确定性等特性。仅利用输入-输出位置和速度数据对工业七连杆机械臂的动力学特性进行了辨识。实验结果表明,该方法能够有效地捕获多连杆机械臂的高度非线性动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary structured RBF neural network based control of a seven-link redundant manipulator
A method for the identification of complex nonlinear dynamics of a multilink robot manipulator using Runge-Kutta-Gill neural networks (RKGNN) in the absence of input torque information is proposed. The RKGNN constructed using shape adaptive radial basis functions (RBF) are trained using an evolutionary algorithm. Due to the fact that the main function network is divided into subnetworks to represent detailed properties of the dynamics of a manipulator, the neural networks have greater information processing capacity and they can be tested for properties such as positive definiteness of the inertia matrix. Dynamics of an industrial seven-link manipulator are identified using only input-output position and their velocity data. Promising experimental control results are obtained to prove the ability of the proposed method in capturing highly nonlinear dynamics of a multilink manipulator in an effective manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信