PLS路径建模中复合材料预测性能的评价

N. Danks, Soumya Ray, G. Shmueli
{"title":"PLS路径建模中复合材料预测性能的评价","authors":"N. Danks, Soumya Ray, G. Shmueli","doi":"10.2139/ssrn.3055222","DOIUrl":null,"url":null,"abstract":"Efforts to evaluate predictive performance in Partial Least Squares (PLS) path modeling are making major headway, but have largely focused on the prediction of measurement items. There is still a need to clarify what prediction of constructs might entail. We examine the challenges of measuring predictive power and validity at the construct level. We then propose a technique for overcoming these challenges and provide suitable predictive metrics.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluating the Predictive Performance of Composites in PLS Path Modeling\",\"authors\":\"N. Danks, Soumya Ray, G. Shmueli\",\"doi\":\"10.2139/ssrn.3055222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efforts to evaluate predictive performance in Partial Least Squares (PLS) path modeling are making major headway, but have largely focused on the prediction of measurement items. There is still a need to clarify what prediction of constructs might entail. We examine the challenges of measuring predictive power and validity at the construct level. We then propose a technique for overcoming these challenges and provide suitable predictive metrics.\",\"PeriodicalId\":106740,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric Model Construction\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric Model Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3055222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3055222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在偏最小二乘(PLS)路径建模中评估预测性能的努力正在取得重大进展,但主要集中在测量项目的预测上。仍然有必要澄清结构的预测可能需要什么。我们研究了在结构水平上测量预测能力和有效性的挑战。然后,我们提出了一种技术来克服这些挑战,并提供合适的预测指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Predictive Performance of Composites in PLS Path Modeling
Efforts to evaluate predictive performance in Partial Least Squares (PLS) path modeling are making major headway, but have largely focused on the prediction of measurement items. There is still a need to clarify what prediction of constructs might entail. We examine the challenges of measuring predictive power and validity at the construct level. We then propose a technique for overcoming these challenges and provide suitable predictive metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信