并行GF(2n)乘法器

Trenton J. Grale, E. Swartzlander
{"title":"并行GF(2n)乘法器","authors":"Trenton J. Grale, E. Swartzlander","doi":"10.1109/ACSSC.2017.8335505","DOIUrl":null,"url":null,"abstract":"Operations over polynomial Galois fields GF(2n) are employed in a variety of cryptographic systems. These operations include multiplication and reduction with respect to an irreducible polynomial modulus. Fast parallel multipliers can be designed but require substantial die area. Building on prior work, two fully parallel polynomial n× n multipliers are presented with O(log2 n) latency, which use lookup tables to store modular reduction terms.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel GF(2n) multipliers\",\"authors\":\"Trenton J. Grale, E. Swartzlander\",\"doi\":\"10.1109/ACSSC.2017.8335505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operations over polynomial Galois fields GF(2n) are employed in a variety of cryptographic systems. These operations include multiplication and reduction with respect to an irreducible polynomial modulus. Fast parallel multipliers can be designed but require substantial die area. Building on prior work, two fully parallel polynomial n× n multipliers are presented with O(log2 n) latency, which use lookup tables to store modular reduction terms.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多项式伽罗瓦域GF(2n)上的运算被应用于各种密码系统中。这些运算包括对不可约多项式模的乘法和约简。快速并行乘法器可以设计,但需要大量的模具面积。在先前工作的基础上,提出了两个完全并行的多项式nxn乘法器,其延迟为O(log2 n),它们使用查找表来存储模块化约简项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel GF(2n) multipliers
Operations over polynomial Galois fields GF(2n) are employed in a variety of cryptographic systems. These operations include multiplication and reduction with respect to an irreducible polynomial modulus. Fast parallel multipliers can be designed but require substantial die area. Building on prior work, two fully parallel polynomial n× n multipliers are presented with O(log2 n) latency, which use lookup tables to store modular reduction terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信