BCI分类中自适应分类器的研究进展

Yu-Ze Su
{"title":"BCI分类中自适应分类器的研究进展","authors":"Yu-Ze Su","doi":"10.1145/3448748.3448797","DOIUrl":null,"url":null,"abstract":"A Brain-Computer Interface (BCI) aims at providing a way for controlling external devices through the utilization of brain signals. One of the challenges in electroencephalography (EEG)-based BCI is to adjust the brain signal decoder to detect a user's intention as accurately and efficiently as possible, as EEG signals are non-stationary. Therefore, adaptive classification, an approach to adapt to the changes of the EEG signals, would be effective in overcoming this problem. This paper provides a review of the representative adaptive classifiers used in BCI, and it can be divided into four categories: adaptive linear discriminant analysis, adaptive support vector machine, adaptive Bayesian classifiers and adaptive Riemannian Geometry-based classifiers. Besides, the pros and cons of these adaptive classification algorithms are further described.","PeriodicalId":115821,"journal":{"name":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Adaptive Classifiers for BCI Classification\",\"authors\":\"Yu-Ze Su\",\"doi\":\"10.1145/3448748.3448797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Brain-Computer Interface (BCI) aims at providing a way for controlling external devices through the utilization of brain signals. One of the challenges in electroencephalography (EEG)-based BCI is to adjust the brain signal decoder to detect a user's intention as accurately and efficiently as possible, as EEG signals are non-stationary. Therefore, adaptive classification, an approach to adapt to the changes of the EEG signals, would be effective in overcoming this problem. This paper provides a review of the representative adaptive classifiers used in BCI, and it can be divided into four categories: adaptive linear discriminant analysis, adaptive support vector machine, adaptive Bayesian classifiers and adaptive Riemannian Geometry-based classifiers. Besides, the pros and cons of these adaptive classification algorithms are further described.\",\"PeriodicalId\":115821,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448748.3448797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448748.3448797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BCI)旨在提供一种利用脑信号控制外部设备的方法。由于脑电信号是非平稳的,因此调整脑信号解码器以尽可能准确有效地检测用户的意图是基于脑电图(EEG)的BCI的挑战之一。因此,自适应分类作为一种适应脑电信号变化的方法,将是克服这一问题的有效方法。本文综述了脑机接口中具有代表性的自适应分类器,将其分为四类:自适应线性判别分析、自适应支持向量机、自适应贝叶斯分类器和自适应黎曼几何分类器。此外,还对这些自适应分类算法的优缺点进行了进一步的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Adaptive Classifiers for BCI Classification
A Brain-Computer Interface (BCI) aims at providing a way for controlling external devices through the utilization of brain signals. One of the challenges in electroencephalography (EEG)-based BCI is to adjust the brain signal decoder to detect a user's intention as accurately and efficiently as possible, as EEG signals are non-stationary. Therefore, adaptive classification, an approach to adapt to the changes of the EEG signals, would be effective in overcoming this problem. This paper provides a review of the representative adaptive classifiers used in BCI, and it can be divided into four categories: adaptive linear discriminant analysis, adaptive support vector machine, adaptive Bayesian classifiers and adaptive Riemannian Geometry-based classifiers. Besides, the pros and cons of these adaptive classification algorithms are further described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信