Omega Score:一个改进的中小企业违约预测工具

E. Altman, Marco Balzano, Alessandro Giannozzi, Stjepan Srhoj
{"title":"Omega Score:一个改进的中小企业违约预测工具","authors":"E. Altman, Marco Balzano, Alessandro Giannozzi, Stjepan Srhoj","doi":"10.1080/26437015.2023.2186284","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Omega Score, a novel small and medium-sized enterprise (SME) default predictor developed by Altman et al. in 2022, combines indicators related to financial ratios, payment behavior, and management and employees variables that play an important role in predicting SME defaults. Built with machine-learning techniques and rich dataset information, the Omega Score can be used to categorize an SME into one of the following three groups: healthy, moderate-risk, and high-risk. The Omega Score can be utilized by financial institutions to reduce lending errors and minimize loan defaults, support policy makers in implementing effective restructuring policies, assist credit analytics firms in assessing creditworthiness, assist investors in allocating funds, and asset managers to support decision-making processes.","PeriodicalId":246224,"journal":{"name":"Journal of the International Council for Small Business","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Omega Score: An improved tool for SME default predictions\",\"authors\":\"E. Altman, Marco Balzano, Alessandro Giannozzi, Stjepan Srhoj\",\"doi\":\"10.1080/26437015.2023.2186284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Omega Score, a novel small and medium-sized enterprise (SME) default predictor developed by Altman et al. in 2022, combines indicators related to financial ratios, payment behavior, and management and employees variables that play an important role in predicting SME defaults. Built with machine-learning techniques and rich dataset information, the Omega Score can be used to categorize an SME into one of the following three groups: healthy, moderate-risk, and high-risk. The Omega Score can be utilized by financial institutions to reduce lending errors and minimize loan defaults, support policy makers in implementing effective restructuring policies, assist credit analytics firms in assessing creditworthiness, assist investors in allocating funds, and asset managers to support decision-making processes.\",\"PeriodicalId\":246224,\"journal\":{\"name\":\"Journal of the International Council for Small Business\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Council for Small Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/26437015.2023.2186284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Council for Small Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26437015.2023.2186284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Omega Score是Altman等人于2022年开发的一种新型中小企业(SME)违约预测指标,它结合了与财务比率、支付行为、管理和员工变量相关的指标,这些指标在预测中小企业违约中起着重要作用。Omega评分采用机器学习技术和丰富的数据集信息,可用于将中小企业分为以下三组:健康、中等风险和高风险。金融机构可以利用欧米茄评分来减少贷款错误,最大限度地减少贷款违约,支持政策制定者实施有效的重组政策,帮助信用分析公司评估信誉,帮助投资者分配资金,帮助资产管理公司支持决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Omega Score: An improved tool for SME default predictions
ABSTRACT The Omega Score, a novel small and medium-sized enterprise (SME) default predictor developed by Altman et al. in 2022, combines indicators related to financial ratios, payment behavior, and management and employees variables that play an important role in predicting SME defaults. Built with machine-learning techniques and rich dataset information, the Omega Score can be used to categorize an SME into one of the following three groups: healthy, moderate-risk, and high-risk. The Omega Score can be utilized by financial institutions to reduce lending errors and minimize loan defaults, support policy makers in implementing effective restructuring policies, assist credit analytics firms in assessing creditworthiness, assist investors in allocating funds, and asset managers to support decision-making processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信