高效节能的智能视觉触发器设计

Manuele Rusci, D. Rossi, M. Lecca, M. Gottardi, L. Benini, Elisabetta Farella
{"title":"高效节能的智能视觉触发器设计","authors":"Manuele Rusci, D. Rossi, M. Lecca, M. Gottardi, L. Benini, Elisabetta Farella","doi":"10.1109/ISC2.2016.7580824","DOIUrl":null,"url":null,"abstract":"In this work, we present the design of an always-on smart visual trigger. To maximize the energy-efficiency, the whole system is kept in stand-by mode until a significant information is detected by the early-processing of the low-power imager. Within two considered scenarios of vehicle detection, the system runs at minimal power consumption for 84% and 39% of the time. When active, the generation of triggers due to relevant events is conducted by analyzing the trajectory of multiple tracked objects. A parallel event-driven implementation speeds-up the digital computation and leads to a duty cycle below 1% over the frame period. The optimized power management is enabled by defining an always-on camera interface for the System-on-Chip (SoC) processor, which is able to individually activate both the sensor and the processor while running at minimal power consumption. In the considered case-study of vehicle detection, an estimated power consumption of up to 23μW is accounted, depending on the context-activity, and the smart triggers fails one detection over 72 moving vehicles.","PeriodicalId":171503,"journal":{"name":"2016 IEEE International Smart Cities Conference (ISC2)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Energy-efficient design of an always-on smart visual trigger\",\"authors\":\"Manuele Rusci, D. Rossi, M. Lecca, M. Gottardi, L. Benini, Elisabetta Farella\",\"doi\":\"10.1109/ISC2.2016.7580824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the design of an always-on smart visual trigger. To maximize the energy-efficiency, the whole system is kept in stand-by mode until a significant information is detected by the early-processing of the low-power imager. Within two considered scenarios of vehicle detection, the system runs at minimal power consumption for 84% and 39% of the time. When active, the generation of triggers due to relevant events is conducted by analyzing the trajectory of multiple tracked objects. A parallel event-driven implementation speeds-up the digital computation and leads to a duty cycle below 1% over the frame period. The optimized power management is enabled by defining an always-on camera interface for the System-on-Chip (SoC) processor, which is able to individually activate both the sensor and the processor while running at minimal power consumption. In the considered case-study of vehicle detection, an estimated power consumption of up to 23μW is accounted, depending on the context-activity, and the smart triggers fails one detection over 72 moving vehicles.\",\"PeriodicalId\":171503,\"journal\":{\"name\":\"2016 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC2.2016.7580824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2016.7580824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们提出了一个永远在线的智能视觉触发器的设计。为了最大限度地提高能源效率,整个系统保持待机模式,直到低功耗成像仪的早期处理检测到重要信息。在考虑的两种车辆检测场景中,系统以最低功耗运行的时间分别为84%和39%。激活时,通过分析多个被跟踪对象的轨迹,生成相关事件触发。并行事件驱动的实现加速了数字计算,并导致在帧周期内占空比低于1%。优化的电源管理是通过为片上系统(SoC)处理器定义一个始终在线的摄像头接口来实现的,该接口能够在以最低功耗运行的同时单独激活传感器和处理器。在考虑的车辆检测案例研究中,根据上下文活动,估计功耗高达23μW,并且智能触发器在72辆移动车辆中检测失败一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient design of an always-on smart visual trigger
In this work, we present the design of an always-on smart visual trigger. To maximize the energy-efficiency, the whole system is kept in stand-by mode until a significant information is detected by the early-processing of the low-power imager. Within two considered scenarios of vehicle detection, the system runs at minimal power consumption for 84% and 39% of the time. When active, the generation of triggers due to relevant events is conducted by analyzing the trajectory of multiple tracked objects. A parallel event-driven implementation speeds-up the digital computation and leads to a duty cycle below 1% over the frame period. The optimized power management is enabled by defining an always-on camera interface for the System-on-Chip (SoC) processor, which is able to individually activate both the sensor and the processor while running at minimal power consumption. In the considered case-study of vehicle detection, an estimated power consumption of up to 23μW is accounted, depending on the context-activity, and the smart triggers fails one detection over 72 moving vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信