基于线性估计的前瞻性路径度量,用于有效的软输入软输出树检测

J. Choi, B. Shim, A. Singer
{"title":"基于线性估计的前瞻性路径度量,用于有效的软输入软输出树检测","authors":"J. Choi, B. Shim, A. Singer","doi":"10.1109/ISIT.2010.5513641","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new path metric, which improves performance of soft-input soft-output tree detection for iterative detection and decoding (IDD) systems. While the conventional path metric accounts for the contribution of symbols on a visited path due to the causal nature of tree search, the new path metric reflect the contribution of unvisited paths using an unconstrained soft estimate of undecided symbols. This path metric, referred to as a linear estimate-based look-ahead (LE-LA) path metric is applied to a soft-input soft-output M-algorithm that finds a list of promising symbol candidates and computes a posteriori probability of each entry of the symbol vector using the candidate list found. Through the analysis of a probability of correct path loss (CPL) and computer simulations, we show performance gain of the LE-LA path metric over the conventional path metric.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear estimate-based look-ahead path metric for efficient soft-input soft-output tree detection\",\"authors\":\"J. Choi, B. Shim, A. Singer\",\"doi\":\"10.1109/ISIT.2010.5513641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new path metric, which improves performance of soft-input soft-output tree detection for iterative detection and decoding (IDD) systems. While the conventional path metric accounts for the contribution of symbols on a visited path due to the causal nature of tree search, the new path metric reflect the contribution of unvisited paths using an unconstrained soft estimate of undecided symbols. This path metric, referred to as a linear estimate-based look-ahead (LE-LA) path metric is applied to a soft-input soft-output M-algorithm that finds a list of promising symbol candidates and computes a posteriori probability of each entry of the symbol vector using the candidate list found. Through the analysis of a probability of correct path loss (CPL) and computer simulations, we show performance gain of the LE-LA path metric over the conventional path metric.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的路径度量,提高了迭代检测和解码(IDD)系统的软输入软输出树检测性能。由于树搜索的因果性质,传统的路径度量考虑了访问路径上符号的贡献,而新的路径度量使用未决定符号的无约束软估计来反映未访问路径的贡献。这种路径度量称为基于线性估计的预检(LE-LA)路径度量,它应用于软输入软输出m算法,该算法查找有希望的候选符号列表,并使用找到的候选列表计算符号向量的每个条目的后检概率。通过对正确路径损失(CPL)概率的分析和计算机模拟,我们展示了LE-LA路径度量比传统路径度量的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear estimate-based look-ahead path metric for efficient soft-input soft-output tree detection
In this paper, we propose a new path metric, which improves performance of soft-input soft-output tree detection for iterative detection and decoding (IDD) systems. While the conventional path metric accounts for the contribution of symbols on a visited path due to the causal nature of tree search, the new path metric reflect the contribution of unvisited paths using an unconstrained soft estimate of undecided symbols. This path metric, referred to as a linear estimate-based look-ahead (LE-LA) path metric is applied to a soft-input soft-output M-algorithm that finds a list of promising symbol candidates and computes a posteriori probability of each entry of the symbol vector using the candidate list found. Through the analysis of a probability of correct path loss (CPL) and computer simulations, we show performance gain of the LE-LA path metric over the conventional path metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信