基于LSTM的深度学习血糖预测模型

Muhammad Muneeb Siddiqui, Rauf Ahmed Shams Malick, Ghufran Ahmed
{"title":"基于LSTM的深度学习血糖预测模型","authors":"Muhammad Muneeb Siddiqui, Rauf Ahmed Shams Malick, Ghufran Ahmed","doi":"10.1109/MAJICC56935.2022.9994178","DOIUrl":null,"url":null,"abstract":"Diabetes has become one of the most prominent health problems in the modern era. Neural networks aid in better medical diagnosis considering dynamic nature of learning model. LSTM model is a form of artificial recurrent neural network which is widely used in deep learning, specifically in sequence prediction data elements. Main benefit of opting for LSTMs model in this research is that it provided significant aid in sequence classification using raw time series data for data transformation and classification of blood sugar level. Results showed that blood sugar level can be predicted by using the LSTM model with an error margin of approximately ±39. Accuracy of the model can be improved by inclusion of additional parameters in the model to minimize the variation.","PeriodicalId":205027,"journal":{"name":"2022 Mohammad Ali Jinnah University International Conference on Computing (MAJICC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM Based Deep Learning Model for Blood Sugar Prediction\",\"authors\":\"Muhammad Muneeb Siddiqui, Rauf Ahmed Shams Malick, Ghufran Ahmed\",\"doi\":\"10.1109/MAJICC56935.2022.9994178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes has become one of the most prominent health problems in the modern era. Neural networks aid in better medical diagnosis considering dynamic nature of learning model. LSTM model is a form of artificial recurrent neural network which is widely used in deep learning, specifically in sequence prediction data elements. Main benefit of opting for LSTMs model in this research is that it provided significant aid in sequence classification using raw time series data for data transformation and classification of blood sugar level. Results showed that blood sugar level can be predicted by using the LSTM model with an error margin of approximately ±39. Accuracy of the model can be improved by inclusion of additional parameters in the model to minimize the variation.\",\"PeriodicalId\":205027,\"journal\":{\"name\":\"2022 Mohammad Ali Jinnah University International Conference on Computing (MAJICC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Mohammad Ali Jinnah University International Conference on Computing (MAJICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAJICC56935.2022.9994178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Mohammad Ali Jinnah University International Conference on Computing (MAJICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAJICC56935.2022.9994178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病已成为现代社会最突出的健康问题之一。考虑到学习模型的动态性,神经网络有助于更好的医学诊断。LSTM模型是人工递归神经网络的一种形式,广泛应用于深度学习,特别是序列预测数据元素。本研究中选择LSTMs模型的主要好处是,它为使用原始时间序列数据进行数据转换和血糖水平分类的序列分类提供了重要的帮助。结果表明,使用LSTM模型可以预测血糖水平,误差范围约为±39。模型的精度可以通过在模型中加入额外的参数来减小变化来提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSTM Based Deep Learning Model for Blood Sugar Prediction
Diabetes has become one of the most prominent health problems in the modern era. Neural networks aid in better medical diagnosis considering dynamic nature of learning model. LSTM model is a form of artificial recurrent neural network which is widely used in deep learning, specifically in sequence prediction data elements. Main benefit of opting for LSTMs model in this research is that it provided significant aid in sequence classification using raw time series data for data transformation and classification of blood sugar level. Results showed that blood sugar level can be predicted by using the LSTM model with an error margin of approximately ±39. Accuracy of the model can be improved by inclusion of additional parameters in the model to minimize the variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信