Sanzo Ugawa, Takeo Azuma, T. Imagawa, Yusuke Okada
{"title":"弱光条件下文物高灵敏度DRE相机性能评价","authors":"Sanzo Ugawa, Takeo Azuma, T. Imagawa, Yusuke Okada","doi":"10.1109/VSMM.2010.5665991","DOIUrl":null,"url":null,"abstract":"We proposed a color video generation method for spatio-temporal high resolution video imaging in dark conditions.[1] The method (dual resolutions and exposures(DRE) method) consists of a high sensitive imaging with employing long time exposure and a subsequent spatio-temporal decomposition process which suppresses a motion blur caused by the long time exposure. Imaging step captures RGB color video sequences with different spatio-temporal resolution sets to increase light amount. Processing step reconstructs a high spatio-temporal resolution color video from those input video sequences using the regularization framework. The performance of DRE is regard to the spectral distribution of a subject was evaluated in this study. Firstly, the spectral distribution of a green subject (which is though to be unfavorable from the viewpoint of imaging with DRE) was measured. Secondly, this subject was captured on video with DRE, the peak signal-to-noise ratio (PSNR) of the video images was evaluated. Experimental results showed that the DRE method is effective in regard to green subjects. As for subjects that are commonly seen, their spectral distribution showed a broad shape, and the reconstructed images with DRE had high PSNRs. Moreover, even for the subject with a peaky spectral distribution (such as an LED), PSNR value was high. This is because the spectral characteristic of the color filter used with DRE has a wide crosstalk region across the colors","PeriodicalId":348792,"journal":{"name":"2010 16th International Conference on Virtual Systems and Multimedia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance evaluation of high sensitive DRE camera for cultural heritage in subdued light conditions\",\"authors\":\"Sanzo Ugawa, Takeo Azuma, T. Imagawa, Yusuke Okada\",\"doi\":\"10.1109/VSMM.2010.5665991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a color video generation method for spatio-temporal high resolution video imaging in dark conditions.[1] The method (dual resolutions and exposures(DRE) method) consists of a high sensitive imaging with employing long time exposure and a subsequent spatio-temporal decomposition process which suppresses a motion blur caused by the long time exposure. Imaging step captures RGB color video sequences with different spatio-temporal resolution sets to increase light amount. Processing step reconstructs a high spatio-temporal resolution color video from those input video sequences using the regularization framework. The performance of DRE is regard to the spectral distribution of a subject was evaluated in this study. Firstly, the spectral distribution of a green subject (which is though to be unfavorable from the viewpoint of imaging with DRE) was measured. Secondly, this subject was captured on video with DRE, the peak signal-to-noise ratio (PSNR) of the video images was evaluated. Experimental results showed that the DRE method is effective in regard to green subjects. As for subjects that are commonly seen, their spectral distribution showed a broad shape, and the reconstructed images with DRE had high PSNRs. Moreover, even for the subject with a peaky spectral distribution (such as an LED), PSNR value was high. This is because the spectral characteristic of the color filter used with DRE has a wide crosstalk region across the colors\",\"PeriodicalId\":348792,\"journal\":{\"name\":\"2010 16th International Conference on Virtual Systems and Multimedia\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 16th International Conference on Virtual Systems and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSMM.2010.5665991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 16th International Conference on Virtual Systems and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSMM.2010.5665991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of high sensitive DRE camera for cultural heritage in subdued light conditions
We proposed a color video generation method for spatio-temporal high resolution video imaging in dark conditions.[1] The method (dual resolutions and exposures(DRE) method) consists of a high sensitive imaging with employing long time exposure and a subsequent spatio-temporal decomposition process which suppresses a motion blur caused by the long time exposure. Imaging step captures RGB color video sequences with different spatio-temporal resolution sets to increase light amount. Processing step reconstructs a high spatio-temporal resolution color video from those input video sequences using the regularization framework. The performance of DRE is regard to the spectral distribution of a subject was evaluated in this study. Firstly, the spectral distribution of a green subject (which is though to be unfavorable from the viewpoint of imaging with DRE) was measured. Secondly, this subject was captured on video with DRE, the peak signal-to-noise ratio (PSNR) of the video images was evaluated. Experimental results showed that the DRE method is effective in regard to green subjects. As for subjects that are commonly seen, their spectral distribution showed a broad shape, and the reconstructed images with DRE had high PSNRs. Moreover, even for the subject with a peaky spectral distribution (such as an LED), PSNR value was high. This is because the spectral characteristic of the color filter used with DRE has a wide crosstalk region across the colors